1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
2 years ago
12

A 0.25 kg ball is suspended from a light 0.65 m string as shown. The string makes an angle of 31° with the vertical. Let U = 0 w

hen the ball is at its lowest point (θ = 0).
a) What is the gravitational potential energy, in joules, of the ball before it is released?
b) What will be the speed of the ball, in meters per second, when it reaches the bottom?
Physics
2 answers:
steposvetlana [31]2 years ago
8 0

Answer:

a. 0.23J

b. 1.35 m/s

Explanation:

a. U = mgh where where m = mass of the object, g = acceleration due to gravity, and h = height

h = L - Lcos(θ) where L = length of the rope, and θ = angle with respect to vertical.

Therefore, U = mg(L - Lcos(θ))

U = 0.25 * 9.8 (0.65m - 0.65cos(31° ))

U = 0.2275 ≈ 0.23J

The gravitational potential energy of the ball before it is released = 0.23J

b. To determine the velocity of the object at the bottom of its motion, all of the energy has gone from gravitational potential into kinetic since at the bottom, the problem says that U = 0. The kinetic energy of an object is given by the following equation:  

K.E=\frac{I}{2}*mv^{2}

where m = mass of the object and v = velocity of the object. Since we know that all of the energy was transferred into kinetic energy at the bottom, we can conclude that:

0.2275=\frac{1}{2} *0.25*v^{2}

v^{2}=\frac{2*0.2275}{0.25}

v^{2}=1.82

v=\sqrt{1.82}=1.3491\\ ≈ 1.35m/s

Therefore, the speed of the ball when it reaches the bottom = 1.35m/s

 

steposvetlana [31]2 years ago
5 0

Explanation:

a) The height of the ball h with respect to the reference line is

h = L - L\cos{31°} = L(1 - \cos{31°})

so its initial gravitational potential energy U_0 is

U = mgh = mgL(1 - \cos{31°})

\:\:\:\:\:=(0.25\:\text{kg})(9.8\:\text{m/s}^2)(0.65\:\text{m})(1 - \cos{31})

\:\:\:\:\:=0.23\:\text{J}

b) To find the speed of the ball at the reference point, let's use the conservation law of energy:

\Delta{K} + \Delta{U} = 0 \Rightarrow K_0 + U_0 = K + U

We know that the initial kinetic energy K_0, as well as its final gravitational potential energy U are zero so we can write the conservation law as

mgL(1 - \cos{31°}) = \frac{1}{2}mv^2

Note that the mass gets cancelled out and then we solve for the velocity v as

v = \sqrt{2gL(1 - \cos{31°})}

\:\:\:\:\:= \sqrt{2(9.8\:\text{m/s}^2)(0.65\:\text{m})(1 - \cos{31°})}

\:\:\:\:\:= 1.3\:\text{m/s}

You might be interested in
What is the difference velocity and force?
Vikki [24]
Velocity means speed, while force means the strength or energy when doing something
6 0
2 years ago
Read 2 more answers
Question 1 of 20
ad-work [718]

Answer

D. move a small magnet back and forth within a section of the coiled wire.

Explanation:

i put that for the test and i got it right

8 0
3 years ago
Read 2 more answers
A worker pushed a 33 kg block 6.1 m along a level floor at constant speed with a force directed 23° below the horizontal. if the
jenyasd209 [6]
The work done occurs only in the direction the block was moved - horizontally. Work is given by:

W = F(h) * d

Where F(h) is the force applied in that direction (horizontal) and d is the distance in that direction. In this case, F(h) is the horizontal component of the applied force, F(app). However, the question doesn't give us F(app), so we need to find it some other way.

Since the block is moving at a constant speed, we know the horizontal forces must be balanced so that the net force is 0. This means that F(h) must be exactly balanced by the friction force, f. We can express F(h) as a function of F(app):

F(h) = F(app)cos(23)

Friction is a little trickier - since the block is being PUSHED into the ground a bit by the vertical component of the applied force, F(v), the normal force, N, is actually a bit more than mg:

N = mg + F(v) = mg + F(app)sin(23)

Now we can get down to business and solve for F(app) - as mentioned above:

F(h) = f
F(h) = uN
F(h) = u * (mg + F(v))
F(app)cos(23) = 0.20 * (33 * 9.8 + F(app)sin(23))
F(app) = 76.8

Now that we have F(app), we can find the exact value of F(h):

F(h) = F(app)cos(23)
F(h) = 76.8cos(23)
F(h) = 70.7

And now that we have F(h), we can find W:
W = F(h) * d
W = 70.7 * 6.1
W = 431.3

Therefore, the work done by the worker's force is 431.3 J. This also represents the increase in thermal energy of the block-floor system.
3 0
3 years ago
What happens to the charge on the conductive sphere when it is connected to a source of charge such as the electrostatic voltage
hichkok12 [17]

Answer and Explanation:

The charge on the conductive sphere spreads out non-uniformly over the surface of the sphere.

Normally, the charge on such spherical surface stay on this surface uniformly, but the presence of a voltage source tampers with that dynamic.

8 0
2 years ago
What is the purpose of experimentation in a research study
Nat2105 [25]
Hello,

The answer is to "prove your hypothesis".

Reason:

Researchers do experiments to prove there hypothesis they will most likely do the experiment a few times in older to have the conclusion valid therefore proving his or her experiment. 

If you need anymore help feel free to ask me!

Hope this helps!

~Nonportrit
6 0
3 years ago
Read 2 more answers
Other questions:
  • What part of the hammer acts as the fulcrum when the hammer is used to remove a nail
    11·1 answer
  • Shakina and Juliette set the car's initial velocity to zero and set the acceleration to +1.2 m/s2, then clicked "start." Answer
    10·1 answer
  • A comic-strip superhero meets an asteroid in outer space and hurls it at 100 m/s. The asteroid is a thousand times more massive
    13·1 answer
  •  True or False? Anything that moves up and down or back and forth in a rhythmic way is vibrating.
    15·1 answer
  • Can sumbody help me wit dis
    10·1 answer
  • Why doesn't a transformer work with direct current? why is ac required?
    10·1 answer
  • Two point charges of equal magnitude (and opposite sign) are 7.5 cm apart. At the midpoint of the line connecting them, their co
    9·1 answer
  • Change to Kelvin 60 degree Celicius؟
    7·1 answer
  • How do unbalanced forces acting on an object affect its motion when the object is at rest? What if it is moving?
    14·2 answers
  • It is easier to overcome load when the load is shifted towards the wheel in a wheelbarrow why ? give reason​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!