The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
Answer:
A star with 15 solar masses is too big to be a main-sequence star.
Answer: Accoding to research "Triton is unique among all the large moons in the solar system because it orbits Neptune in a direction opposite to the planet's rotation (a "retrograde" orbit). It is unlikely to have formed in this configuration and was probably captured from elsewhere."
Explanation:
<span>hair follicle
should be your answer</span>
Answer:
95.9°
Explanation:
The diagram illustrating the action of the two forces on the object is given in the attached photo.
Using sine rule a/SineA = b/SineB, we can obtain the value of B° as shown in the attached photo as follow:
a/SineA = b/SineB,
83/Sine52 = 56/SineB
Cross multiply to express in linear form
83 x SineB = 56 x Sine52
Divide both side by 83
SineB = (56 x Sine52)/83
SineB = 0.5317
B = Sine^-1(0.5317)
B = 32.1°
Now, we can obtain the angle θ, between the two forces as shown in the attached photo as follow:
52° + B° + θ = 180° ( sum of angles in a triangle)
52° + 32.1° + θ = 180°
Collect like terms
θ = 180° - 52° - 32.1°
θ = 95.9°
Therefore, the angle between the two forces is 95.9°