The energy that transforms into kinetic energy is the Potential Energy. It happens that objects can store energy as a result of its position. Image for example a slingshot. When you stretch the slingshot, it stores energy, this energy would be the energy you used to stretch the slingshot, the material aborbs it and then release to throw the projectile.
Now, on earth and everywhere in the universe where you are close to an object with mass, it exists a force called gravity that attracts you towards that object. Every object that has mass exercises gravitational attration towards the other objects. It just happens that Earth is has so much mass that its gravitational pull is way stronger that the gravitational pull of another object on its surface. This means things will tend to be as close as earth as possible, and in order to move something away from earth, you will have to perform a force in the opposite direction to Earth and, therefore, consume energy. This energy will be store as potential energy, and when you drop the object, the potential energy will be the energy that will transform to kinetic energy.
The vehicle's centripetal acceleration is equal to 22.5m/s²
Radius, r = 10 meter
Speed, V = 15 m/s
To ascertain the car's centripetal acceleration
A(c) = V²/R
We obtain the following when we enter the formula's parameters:
A(c) = 152/10
A(c) = 225/10
A(c) = 22.5m/s²
<h3>What is Centripetal acceleration ?</h3>
When an item moves in a circular route, one of its motion characteristics is centripetal acceleration. Any motion in a circle with an acceleration vector pointing in the direction of the circle's centre is referred to as centripetal acceleration.
- Centripetal forces cause accelerations at the centripetal axis. With the exception of the Earth's rotation around the Sun, any satellite's circular motion around a celestial body is brought on by the centripetal force produced by their mutual gravitational pull.
Hence, Centripetal acceleration is
22.5 m/s²
Learn more about Centripetal acceleration here:
brainly.com/question/79801
#SPJ4
A gas doesn't have a fixed shape because the amount of space between the molecules in gas can change easily. B. the particles are not compressible
By tightening a string you are actually putting more stress on the string you are giving it a new frequency that isn't natural.
Hope this helps
<span />