Answer:
#See solution for details
Explanation:
a. Action: Earth pulls on the Moon, reaction: Moon pulls on Earth;
b. Action: foot applies force to ball, reaction: ball applies force to foot;
c. Action: rocket pushes on gas, reaction: gas pushes back on rocket;
d. Action: car tires push backward on road, reaction: road pushes forward on tires;
e. Action: jumper pushes down on ground, reaction: ground pushes up on jumper;
f. Action: gun pushes forward on bullet, reaction: bullet pushes backward on gun
Answer:
There will be a phase change at the first interface and no phase change at the second interface:
If the film is 1/4 wavelength thick this restriction will hold
The wavelength of the light in oil is 545 nm / 1.45 = 376 nm
376 nm / 4 = 94 nm
"D" is correct
Answer:
<h2>5850 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 750 × 7.8
We have the final answer as
<h3>5850 N</h3>
Hope this helps you
Answer:
Inductive reactance is 125.7 Ω
Explanation:
It is given that,
Inductance, 
Voltage source, V = 15 volt
Frequency, f = 400 Hz
The inductive reactance of the circuit is equivalent to the impedance. It opposes the flow of electric current throughout the circuit. It is given by :




So, the inductive reactance is 125.7 Ω. Hence, this is the required solution.
Answer:
E=12.2V/m
Explanation:
To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.
The equation is given by,

Where,
V= Drift Velocity
I= Flow of current
n= number of electrons
q = charge of electron
A = cross-section area.
For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is



Mobility
We can find the drift velocity replacing,


The electric field is given by,


