Answer:
λ = 5.85 x 10⁻⁷ m = 585 nm
f = 5.13 x 10¹⁴ Hz
Explanation:
We will use Young's Double Slit Experiment's Formula here:

where,
λ = wavelength = ?
Y = Fringe Spacing = 6.5 cm = 0.065 m
d = slit separation = 0.048 mm = 4.8 x 10⁻⁵ m
L = screen distance = 5 m
Therefore,

<u>λ = 5.85 x 10⁻⁷ m = 585 nm</u>
Now, the frequency can be given as:

where,
f = frequency = ?
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>f = 5.13 x 10¹⁴ Hz</u>
Answer:
a = 2 [m/s²]
Explanation:
To be able to solve this problem we must make it clear that the starting point when the time is equal to zero, the velocity is 5 [m/s] and when three seconds have passed the velocity is 11 [m/s], this point is the final point or the final velocity.
We can use the following equation.

where:
Vf = final velocity = 11 [m/s]
Vo = initial velocity = 5 [m/s]
a = acceleration [m/s²]
t = time = 3 [s]
![11 = 5 + a*3\\6=3*a\\a= 2[m/s^{2} ]](https://tex.z-dn.net/?f=11%20%3D%205%20%2B%20a%2A3%5C%5C6%3D3%2Aa%5C%5Ca%3D%202%5Bm%2Fs%5E%7B2%7D%20%5D)
Answer:
10.4 m/s
Explanation:
First, find the time it takes for the projectile to fall 6 m.
Given:
y₀ = 6 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
(0 m) = (6 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 1.11 s
Now find the horizontal position of the target after that time:
Given:
x₀ = 6 m
v₀ = 5 m/s
a = 0 m/s²
t = 1.11 s
Find: x
x = x₀ + v₀ t + ½ at²
x = (6 m) + (5 m/s) (1.11 s) + ½ (0 m/s²) (1.11 s)²
x = 11.5 m
Finally, find the launch velocity needed to travel that distance in that time.
Given:
x₀ = 0 m
x = 11.5 m
t = 1.11 s
a = 0 m/s²
Find: v₀
(11.5 m) = (0 m) + v₀ (1.11 s) + ½ (0 m/s²) (1.11 s)²
v₀ = 10.4 m/s
Answer:
B. Axial stress divided by axial strain
Explanation:
Elasticity:
It is the tendency of an object to deform along the axis when an opposing force is applied without facing permanent change in shape.
Plasticity:
When an object crosses the elasticity limit, it enters plasticity where the change due to stress is permanent and the object might even break.
Yield strength:
Yield strength is the point of maximum bearable stress that indicates the limit of elasticity.
Our case:
As the stress applied is less than the yield strength, the rod is still in the elasticity state and its modulus can be calculated.
Modulus of Elasticity = Stress along axis/Ratio of change in length to original length
Axial strain is basically the ratio of change in length to original length.
So, Modulus of Elasticity = Axial Stress/ Axial Strain
Answer:
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m.
Explanation:
The Coulomb force between two charges,
and
, separated by a distance,
, is given

<em>k</em> is a constant.
For the charge Z to be at equilibrium, the force exerted on it by charge X must be equal and opposite to the force exerted on it by charge Y.
It is to be placed along the <em>x</em>-axis. Hence, it is on the same line as charges X and Y.
Let the charge on Z be <em>Q</em>. It is positive.
Let the distance from charge X be <em>x m.</em> Then the distance from charge Y will be (0.60 - <em>x</em>) m.
Force due to charge X

Force due to charge Y

Since both forces are equal and opposite,







Applying the quadratic formula,

or 
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m