M(KNO₃)=101.1 g/mol
M(CO(NH₂)₂)=60.1 g/mol
m(N)=M(N)m(KNO₃)/M(KNO₃)
m(N)=2M(N)m(CO(NH₂)₂)/M(CO(NH₂)₂)
2m(CO(NH₂)₂)/M(CO(NH₂)₂)=m(KNO₃)/M(KNO₃)
m(CO(NH₂)₂)=M(CO(NH₂)₂)m(KNO₃)/(2M(KNO₃))
m(CO(NH₂)₂)=60.1*101.1/(2*101.1)=30.05 g
Answer:
Darmstadtium
Explanation:
An element with the electronic configuration 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s²4f¹⁴5d¹⁰6p⁶7s²5f¹⁴6d⁸ has 110 electrons in its electron shells.
Since the element is a neutral atom, this number is also equal to its atomic number. Therefore, its atomic number is 110.
The element in the period table that has an atomic number of 110 is Darmstadtium, a d-block element, thus a transittion metal. It also belong to period 7 in the Periodic table of elements.
Answer:
<h2>0.93 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 37.2 g
volume = 40 mL
We have

We have the final answer as
<h3>0.93 g/mL</h3>
Hope this helps you
There is only one carbon on the reactant side.
Gravitational potential energy is the energy stored in an object relative to its position :)