genetics and reproduction is all about dna.
The volume of the balloon is approximately 2652 liters.
<h3>How to determine the volume occupied by the gas in a balloon </h3>
Let suppose that <em>flammable</em> hydrogen behaves ideally. GIven the molar mass (
), in kilograms per kilomole, and mass of the gas (
), in kilograms. The volume occupied by the gas (
), in cubic centimeters, is found by the equation of state for <em>ideal</em> gases:
(1)
Where:
- Ideal gas constant, in kilopascal-cubic meters per kilomole-Kelvin.
- Temperature, in Kelvin
- Pressure, in kilopascals
If we know that
,
,
,
and
, then the volume of the balloon is:

(
)
The volume of the balloon is approximately 2652 liters.
To learn more on ideal gases, we kindly invite to check this verified question: brainly.com/question/8711877
Answer:
The elements are in the same column/group IIA.
See the explanation below, please.
Explanation:
The elements Calcium, Strontium, Beryllium, Magnesium, Barium and Radio, belong to the group of alkaline earth metals located in group IIA of the periodic table, they require 2 electrons to complete their octet (they have 2 valence electrons). reagents than alkali metals.
Answer:
Elimination
Explanation:
Since they are removing water from the solution, it is called elimination.
Answer:
148 g
Explanation:
Step 1: Write the balanced equation for the decomposition of sodium azide
2 NaN₃ ⇒ 2 Na + 3 N₂
Step 2: Calculate the moles corresponding to 95.8 g of N₂
The molar mass of N₂ is 28.01 g/mol.
95.8 g × 1 mol/28.01 g = 3.42 mol
Step 3: Calculate the moles of NaN₃ needed to form 3.42 moles of N₂
The molar ratio of NaN₃ to N₂ is 2:3. The moles of NaN₃ needed are 2/3 × 3.42 mol = 2.28 mol.
Step 4: Calculate the mass corresponding to 2.28 moles of NaN₃
The molar mass of NaN₃ is 65.01 g/mol.
2.28 mol × 65.01 g/mol = 148 g