Answer:
See Explanation
Explanation:
The question is incomplete; as the mixtures are not given.
However, I'll give a general explanation on how to go about it and I'll also give an example.
The percentage of a component in a mixture is calculated as:

Where
E = Amount of element/component
T = Amount of all elements/components
Take for instance:
In 
The amount of all elements is: (i.e formula mass of
)



The amount of calcium is: (i.e formula mass of calcium)



So, the percentage component of calcium is:




The amount of hydrogen is:



So, the percentage component of hydrogen is:




Similarly, for oxygen:
The amount of oxygen is:



So, the percentage component of oxygen is:




Answer:
% yield = 82.5%
Explanation:
HgO + 2Cl₂ → HgCl₂ + Cl₂O
Our reactants are:
Our products are:
We do not have information about moles of reactants, but we do know the theoretical yield and the grams of product, in this case Cl₂O, we have produced.
Percent yield = (Yield produced / Theoretical yield) . 100
Theoretical yield is the mass of product which is produced by sufficent reactant. We replace data:
% yield = (0.71 g/0.86g) . 100 = 82.5%
Answer : The type of reaction described in the sentence is Synthesis or Combination
Explanation :
The balanced equation for the reaction between Phosphorous and Oxygen gas can be written as

From the above equation we can see that there are two different reactants ( P and O₂ ) which are combining with each other to give a single product.
This type of reaction is known as Combination or Synthesis.
A general form of Synthesis reaction is given below.

Here we can conclude that a synthesis / combination reaction is the one where 2 or more reactants combine together to give only one product .
An electron shifts from a lower energy to a higher energy
Answer:
146 kJ
Explanation:
There are two heat flows in this question.
Heat lost on cooling + heat lost on solidifying = 0
q₁ + q₂ = 0
mCΔT + nΔHsol = 0
Data:
m = 575 g
C = 0.449 J·K⁻¹g⁻¹
T_i = 1825 K
T_f = 1811 K
ΔHsol = -13.8 kJ·mol⁻¹
Calculations:
(a) Heat lost on cooling
ΔT = T_f - T_i = 1811 K - 1825 K = -14 K
q₁ = mCΔT = 575 g × 0.449 J·K⁻¹g⁻¹ × (-14 K) = -361 J = -3.61 kJ
(b) Heat lost on solidifying
(c) Total heat lost
q = q₁ + q₂ = -3.61 kJ - 142.1 kJ = -146 kJ
The heat lost was 146 kJ.