Answer:
a. Categorical
b. Quantitative
c. Categorical
d. Categorical
e. Quantitative
Step-by-step explanation:
a.
Month of year with most reservations is a qualitative or categorical variable because it can't be represented numerically in a meaningful way. For example, with most reservations month of a year can be June or July.
b.
Airbnb's total annual profit is a quantitative variable because it can be presented in numerical form and mathematical operation can be meaningfully interpreted.
c.
Type of rental on Airbnb is a qualitative or categorical variable because it can't be represented numerically in a meaningful way. Also, it can be divided into categories whole house, private room and shared room etc.
d.
Unique 10-digit reservation number is a qualitative or categorical variable as these exists in numerical form but these numbers are used only as identifiers. The mathematical operation on these numbers can't be meaningfully be interpreted.
e.
Number of house rentals is quantitative variable because it can be presented in numerical form and mathematical operation can be meaningfully interpreted.
Answer and Step-by-step explanation:
(a) Given that x and y is even, we want to prove that xy is also even.
For x and y to be even, x and y have to be a multiple of 2. Let x = 2k and y = 2p where k and p are real numbers. xy = 2k x 2p = 4kp = 2(2kp). The product is a multiple of 2, this means the number is also even. Hence xy is even when x and y are even.
(b) in reality, if an odd number multiplies and odd number, the result is also an odd number. Therefore, the question is wrong. I assume they wanted to ask for the proof that the product is also odd. If that's the case, then this is the proof:
Given that x and y are odd, we want to prove that xy is odd. For x and y to be odd, they have to be multiples of 2 with 1 added to it. Therefore, suppose x = 2k + 1 and y = 2p + 1 then xy = (2k + 1)(2p + 1) = 4kp + 2k + 2p + 1 = 2(kp + k + p) + 1. Let kp + k + p = q, then we have 2q + 1 which is also odd.
(c) Given that x is odd we want to prove that 3x is also odd. Firstly, we've proven above that xy is odd if x and y are odd. 3 is an odd number and we are told that x is odd. Therefore it follows from the second proof that 3x is also odd.
Answer:
15) 20.4
16) 40.4
17) 2.5
18) 32
Step-by-step explanation:
15) Use the calculator: 42.7/11.1*5.3
16) Use the calculator: 121.1/3
17) Use the calculator: 32.5/ (42.9/3.3)
18) 28.8/ (1.8/2)
Answer:
not sure i it is one of these answers but if so , it d
Step-by-step explanation:
You need to isolate the variable my dividing each side by factors that don’t contain the variable
x=-5