Answer:
a) 4.9*10^-6
b) 5.71*10^-15
Explanation:
Given
current, I = 3.8*10^-10A
Diameter, D = 2.5mm
n = 8.49*10^28
The equation for current density and speed drift is
J = I/A = (ne) Vd
A = πD²/4
A = π*0.0025²/4
A = π*6.25*10^-6/4
A = 4.9*10^-6
Now,
J = I/A
J = 3.8*10^-10/4.9*10^-6
J = 7.76*10^-5
Electron drift speed is
J = (ne) Vd
Vd = J/(ne)
Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)
Vd = 7.76*10^-5/1.3584*10^10
Vd = 5.71*10^-15
Therefore, the current density and speed drift are 4.9*10^-6
And 5.71*10^-15 respectively
The change in velocity is +4 m/s to the right (or -4 m/s to the left).
The object's mass is irrelevant.
Answer:
20.2 seconds
Explanation:
The airplane (and therefore the crate) initially has no vertical velocity, so v₀ = 0 m/s.
The crate is in free fall, so a = -9.8 m/s².
The crate falls downward, so Δx = -2000 m.
Find: t, the time it takes for the crate to land.
Δx = v₀ t + ½ at²
-2000 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 20.2 s
It takes 20.2 seconds for the crate to land.
Answer:
A. For every action there is an equal and opposite reaction.
Am sorry what can you be more specific