1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlekseyPX
3 years ago
11

All are examples of electric forces except _________.

Physics
1 answer:
pochemuha3 years ago
6 0
The correct answer is A
You might be interested in
Write a short description of how the motion of the racers might change from the start of the race to the finish line
Ad libitum [116K]
The motion of the racers might change from the start because the pressure goes up so all the racer wants is to speed up and win, so when the racer first starts he or she is calm because he's not driving yet and when he or she is on his/hers way to he finish line he/she just wants to win and gets under pressure so he speeds up even more and drifts. Your welcome
6 0
3 years ago
After watching a show about submarines, Jamil wants to learn more about the oceans. Which question could be answered through sci
lyudmila [28]
He can ask what substances dissolve in ocean water. 
6 0
4 years ago
Read 2 more answers
Suppose that a person gets hit by a bus moving at 30 mi/h with a 58,000 lbs of force in the direction of motion. If the mass of
alexandr402 [8]

The impulse of a force is due to the change in the motion of an object

A. The persons speed after impact is approximately 59.38 mi/h

B. The expected speed is <u>29.89 mi/h</u> which is less than the findings

Reason:

Known parameters are;

The speed of the bus, v = 30 mi/h

The force with which the person was hit, F = 58,000 lbs

Mass of the bus, M = 40,000 lbs

Mass of the person, m = 150 lbs

Duration of the impact, Δt = 0.007 seconds

A. The speed of the person at the end of the impact, <em>v</em>, is given as follows;

The impulse of the force = F × Δt = m × Δv

For the person, we get;

58,000 lbf ≈ 1866094.816 lb·ft./s²

58,000 lbf × 0.007 s = 150 lbs × Δv

1,866,094.816 lb·ft./s²

\Delta v = \dfrac{1,866,094.816\ lbs \times 0.007 \, s}{150 \, lbs} \approx  87.084  \ ft./s

Δv = v₂ - v₁

The initial speed of the person at the instant, can be as v₁ = 0

The final speed, v₂ = Δv - v₁

∴ v₂ ≈  87.084 ft./s - 0 = 87.084 ft./s

≈ <u>87.084 ft./s</u>

<u />v_2 \approx \dfrac{87.084 \ ft./s}{y} \times\dfrac{1 \ mi}{5280 \ ft.} \times \dfrac{3,600 \ s}{1 \, hour} \approx 59.38 \ mi/h<u />

The speed of the person at the end of the impact, v₂ ≈ <u>59.38 mi/h</u>

B. Where the momentum is conserved, we have;

m₁·v₁ + m₂v₂ = (m₁ + m₂)·v

v = \dfrac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_2 + m_1}

v = \dfrac{40,000 \times 30  + 150 \times 0}{40,000 + 150} \approx 29.89

The expected speed of the person at the end of the impact is 29.89 mi/h, and therefore, <u>the findings does not agree with the expectation</u>

Learn more here:

brainly.com/question/18326789

3 0
3 years ago
A plastic rod of length d = 1.5 m lies along the x-axis with its midpoint at the origin. The rod carries a uniform linear charge
Serga [27]

Answer:

Explanation:

Let the plastic rod extends from - L to + L .

consider a small length of dx on the rod on the positive x axis at distance x . charge on it =  λ dx where  λ is linear charge density .

It will create a field at point P on y -axis . Distance of point P

= √ x² + .15²

electric field at P due to small charged length

dE = k λ dx x  / (x² + .15² )

Its component along Y - axis

= dE cosθ where θ is angle between direction of field dE and y axis

= dE x .15 / √ x² + .15²

=  k λ dx  .15 / (x² + .15² )³/²

If we consider the same strip along the x axis at the same position  on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L

E = ∫  k λ  .15  / (x² + .15² )³/² dx

=  k λ  x L / .15 √( L² / 4 + .15² )

6 0
3 years ago
Compute your average velocity in the following two cases: (a) You walk 50.2 m at a speed of 2.21 m/s and then run 50.2 m at a sp
Readme [11.4K]

Answer:

a) 2.87 m/s

b) 3.23 m/s

Explanation:

The avergare velocity can be found dividing the length traveled d by the total time t.

a)

For the first part we easily know the total traveled length which is:

d = 50.2 m + 50.2 m = 100.4 m

The time can be found dividing the distance by the velocity:

t1 = 50.2 m / 2.21 m/s = 22.7149 s

t2 = 50.2 m / 4.11 m/s = 12.2141 s

t = t1 +t2 = 34.9290 s

Therefore, the average velocity is:

v = d/t =2.87 m/s

b)

Here we can easily know the total time:

t = 1 min + 1.16 min = 129.6 s

Now the distance wil be found multiplying each velocity by the time it has travelled:

d1 = 2.21 m/s * 60 s = 132.6 m

d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m

d = 418.656 m

Therefore, the average velocity is:

v = d/t =3.23 m/s

5 0
3 years ago
Other questions:
  • Precision measurements of the acceleration due to gravity show that the acceleration is slightly different in different location
    13·2 answers
  • Two electric motors drive two elevators of equal mass in a three-story building 10 meters tall. Each elevator has a mass of 1,00
    7·1 answer
  • Read the scenario. A horse accelerates +2 mi/h/s south. Which option defines the horse’s acceleration?
    15·1 answer
  • The bubbles in a carbonated soft drink are produced when carbonic acid decomposes to form carbon dioxide and water. In a closed
    5·1 answer
  • 24 A uniform electric field of magnitude 1.1×104 N/C is perpendicular to a square sheet with sides 2.0 m long. What is the elect
    7·1 answer
  • An example of potential energy is a ball sitting _____ of the stairs.
    8·1 answer
  • What will happen when the sun blows up?
    5·2 answers
  • Air, water and salt solution are given in the table.
    15·1 answer
  • A baseball player hits a ball with a bat. At one moment the force exerted by the bat on the ball is 18,000 N. At that same momen
    9·1 answer
  • It takes 0.5 s to complete a 3 m wave. What is the speed of the wave?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!