Answer:
Explanation:
If the Earth's gravity is lost, all items held to the Earth's surface by gravity would float away. That includes the atmosphere, water, people, cars and animals. If an object were secured strongly to the Earth, it would probably remain attached
Answer:
(a) -49.9 kJ/mol;
(b) To the right;
(c) 34.6 kJ/mol
Explanation:
(a) For this reaction, since it's at equilibrium and standard states, we know that we can apply the equation:

Substituting the given variables:

(b) Notice that this reaction is spontaneous, since
. This means reaction spontaneously proceeds to the right side. Besides, K > 1, this means products dominate over reactants, so reaction proceeds to the right.
(c) Given the expression of the formation constant, we can use the same expression to calculate the reaction quotient at non-standard conditions:
![Q_f = \frac{[Ni(NH_3)_6]^{2+}}{[Ni^{2+}][NH_3]^6} = \frac{0.010}{0.0010\cdot 0.0050^6} = 6.4\cdot 10^{14}](https://tex.z-dn.net/?f=Q_f%20%3D%20%5Cfrac%7B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%7D%7B%5BNi%5E%7B2%2B%7D%5D%5BNH_3%5D%5E6%7D%20%3D%20%5Cfrac%7B0.010%7D%7B0.0010%5Ccdot%200.0050%5E6%7D%20%3D%206.4%5Ccdot%2010%5E%7B14%7D)
Now, notice that
. In this case, we have an excess of the products, this means reaction will shift to the let left to restore the equilibrium.
Calculate:

The correct answer for the question that is being presented above is this one: "C) The reaction is spontaneous at high temperatures."
Since dH is positive and dS ~ 0 then -TdS ~ 0, meaning dG will always be greater than 0 so t<span>he reaction is spontaneous at high temperatures.</span>