Answer:
To find the sum of a + b where a and b are rational number.
1. when a and b are natural numbers
just add them . for example a =3, b=8
then ,a + b = 11
2. When a and b are whole numbers,
simply add them . for example a= 0, b=8
a+ b = 0 + 8= 8
3. When a and b are integers
for example, a =-1 b=8,
a+ b= -1+ 8 =7,
a=-2, b= -8
a+ b= -2-8=-10
a= -6 , b=2
a+ b= -6 + 2= -4
a= 8, b= -2
a+ b= 8 +(-2) =6
I have written this because Rational number = [Integers{Whole number(Natural number)}]
now when a= Any fraction=
and b = Any fraction=
now ,

Find L.C.M of q and v
= if q and v are Co-prime , just multiply them to find their L.C.M.
For example 14,9. LCM=14×9=126
Otherwise, Find factors of q and v . Then take out common factors first and then multiply the remaining with with common factors.For example
q=12 and v=18
12 =2×2×3
18=2×3×3
common factor =2,3
non common=2,3
L.C.M= 2×2×3×3=36
Suppose LCM of q and v = r
then ,
=
= 
then ,
a + b=
Answer:
3
Step-by-step explanation:
x = 2
y = 0
plug in values
- 0(2-0)-1
4- 0(2)-1
4-0-1
4-1
3
Let's do this by Briot-Ruffini
First: Find the monomial root
x - 2 = 0
x = 2
Second: Allign this root with all the other coeficients from equation
Equation = -3x³ - 2x² - x - 2
Coeficients = -3, -2, -1, -2
2 | -3 -2 -1 -2
Copy the first coeficient
2 | -3 -2 -1 -2
-3
Multiply him by the root and sum with the next coeficient
2.(-3) = -6
-6 + (-2) = -8
2 | -3 -2 -1 -2
-3 -8
Do the same
2.(-8) = -16
-16 + (-1) = -17
2 | -3 -2 -1 -2
-3 -8 -17
The same,
2.(-17) = -34
-34 + (-2) = -36
2 | -3 -2 -1 -2
-3 -8 -17 -36
Now you just need to put the "x" after all these numbers with one exponent less, see
2 | -3x³ - 2x² - 1x - 2
-3x² - 8x - 17 -36
You may be asking what exponent -36 should be, and I say:
None or the monomial. He's like the rest of this division, so you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 with rest -36 or you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 - 36/(x - 2)
Just divide the rest by the monomial.
Answer:
y=-x-2
Step-by-step explanation:
y+5=-(x-3)
y+5=-x+3
y=-x+3-5
y=-x-2