Explanation:
It represents the direction of flow of positive charge but is treated as a scalar quantity because current follows the laws of scalar addition and not the laws of vector addition. The angle between the wires carrying current does not affect the total current in the circuit.
Answer:2.47
Explanation: did the math
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Answer:
0.218
Explanation:
Given that
Total vibrations completed by the wave is 43 vibrations
Time taken to complete the vibrations is 33 seconds
Length of the wave is 424 cm = 4.24 m
to solve this problem, we first find the frequency.
Frequency, F = 43 / 33 hz
Frequency, F = 1.3 hz
Also, we find the wave velocity. Which is gotten using the relation,
Wave velocity = 4.24 / 15
Wave velocity = 0.283 m/s
Now, to get our answer, we use the formula.
Frequency * Wavelength = Wave Velocity
Wavelength = Wave Velocity / Frequency
Wavelength = 0.283 / 1.3
Wavelength = 0.218