Answer:
82.7 m
Explanation:
u= 22m/s
a= 2.4 m/s^2.
t= 3.2 secs
Therefore the distance travelled can be calculated as follows
S= ut + 1/2at^2
= 22 × 3.2 + 1/2 × 2.4 × 3.2^2
= 70.4 + 1/2×24.58
= 70.4 + 12.29
= 82.7 m
Hence the distance travelled by the truck is 82.7 m
Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
The answer is A.
Sy = 1650 x sin30.5 = 837.4 m toward south
Sx = 1650 x cos30.5 = 1421.7 m toward east
Complete Question
Due to blurring caused by atmospheric distortion, the best resolution that can be obtained by a normal, earth-based, visible-light telescope is about 0.3 arcsecond (there are 60 arcminutes in a degree and 60 arcseconds in an arcminute).Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light
Answer:
The diameter is
Explanation:
From the question we are told that
The best resolution is 
The wavelength is 
Generally the
1 arcminute = > 60 arcseconds
=> x arcminute => 0.3 arcsecond
So

=> 
Now
60 arcminutes => 1 degree
0.005 arcminutes = > z degrees
=> 
=> 
Converting to radian

Generally the resolution is mathematically represented as

=> 
=>
=>