Answer:
The answer to your question should be D.
Explanation:
reactants are on the laft side of arrow and products are on right side of arrow
(D)
Explanation:
The more massive an object is, the greater is the curvature that they produce on the space-time around it.
Answer: She is incorrect to conclude that the reaction is endothermic.
As in the second trial, the temperature has increased by 20 °C , that means the heat has been released and energy is released in exothermic reactions.
Exothermic reactions: The reactions in which the energy of the products is less than the energy of the reactants, and the excess energy is released as heat.
Endothermic reactions: The reactions in which the energy of the products is more than the energy of the reactants, and the excess energy is absorbed as heat.
Answer:
Ok look Im going try my best, and the answer that most likely looks like it can be correct is C the third picture i hope this is correct and helps bye bye:3
also do you wanna get some points >w>
Explanation:
Answer:
Explanation:
We shall apply law of conservation of momentum in space to know the velocity of combination after the impact
m₁v₁ = m₂v₂
.1 x 4 = ( 1 + .1 ) v₂
v₂ = .3636 m /s
1 )
Kinetic energy of the combination
= 1/2 x 1.1 x ( .3636)²
= 7.3 x 10⁻² J
2 )
Initial kinetic energy of the system
= 1/2 x 0.1 x 4²
= 0.8 J
Final kinetic energy of the system = 7.3 x 10⁻²
Loss of energy = .8 - .073
= .727 J
This energy was converted into internal energy of the system .
3 )
increase in entropy = dQ / T
Here dQ = .727 J
T = 300 ( Constant )
dQ / T = 2.42 X 10⁻³ J/K