some ball when you bounce it it comes back up but according to gravity the energy goes away
Answer:
Spring constant of the spring will be equal to 9.255 N /m
Explanation:
We have given mass m = 0.683 kg
Time taken to complete one oscillation is given T = 1.41 sec
We have to find the spring constant of the spring
From spring mass system time period is equal to
, here m is mass and K is spring constant
So 

Squaring both side


So spring constant of the spring will be equal to 9.255 N /m
Answer:
<h3>
<em>2</em><em>4</em><em>7</em><em>9</em><em> </em><em>Newton</em></h3>
<em>Sol</em><em>ution</em><em>,</em>
<em>Mass</em><em>=</em><em>1</em><em>0</em><em>0</em><em> </em><em>kg</em>
<em>Accele</em><em>ration</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>gravity</em><em>(</em><em>g</em><em>)</em><em>=</em><em>2</em><em>4</em><em>.</em><em>7</em><em>9</em><em> </em><em>m</em><em>/</em><em>s^</em><em>2</em>
<em>Now</em><em>,</em><em>.</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²