(4.99 g) / (3.65 g/mL) = 1.37 mL
The answer to your question is 1.37ml.
Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Independent would be the amount of sugar given and the dependent would be the amount of cavities
Scientists have control groups so they can have evidence to show the difference between that one and the experimental ones.
And the independent variable is the one that changes because with out it changing you wouldn't get different results.
I could be wrong tho sorryyy! but i hope this helps
Answer:
The three-point test
Explanation:
The three-point test refers to a ground test utilizing an auxiliary current electrode and an auxiliary potential electrode.