There is no image!?...was there meant to be something attached?
<h3><u>Answer;</u></h3>
The different atoms have different quantized energy levels
<h3><u>Explanation;</u></h3>
- The atoms of different elements have different energy levels because they have different nuclear charges and spins, and different numbers of electrons.
- Each different kind of atom, like hydrogen or radon, has a distinct nuclear charge and number of electrons. This makes the potential energy function different for each atom, and therefore results in different energy levels.
- In an emmission spectra, each bright band corresponds to a difference between energy levels within the atom.
Answer:
= 14.88 N
Explanation:
Let's begin by listing out the given variables:
M = 2.7 kg, L = 3 m, m = 1.35 kg, d = 0.6 m,
g = 9.8 m/s²
At equilibrium, the sum of all external torque acting on an object equals zero
τ(net) = 0
Taking moment about
we have:
(M + m) g * 0.5L -
(L - d) = 0
⇒
= [(M + m) g * 0.5L] ÷ (L - d)
= [(2.7 + 1.35) * 9.8 * 0.5(3)] ÷ (3 - 0.6)
= 59.535 ÷ 2.4
= 24.80625 N ≈ 24.81 N
Weight of bar(W) = M * g = 2.7 * 9.8 = 26.46 N
Weight of monkey(w) = m * g = 1.35 * 9.8 = 13.23 N
Using sum of equilibrium in the vertical direction, we have:
+
= W + w ------- Eqn 1
Substituting T2, W & w into the Eqn 1
+ 24.81 = 26.46 + 13.23
= <u>14.88</u> N
Answer:
16∠45° Ω
Explanation:
Applying,
Z = V/I................... Equation 1
Where Z = Impedance, V = Voltage output, I = current input.
Given: V = 120cos(10t+75°), = 120∠75°, I = 7.5cos(10t+30) = 7.5∠30°
Substitute these values into equation 1
Z = 120cos(10t+75°)/7.5cos(10t+30)
Z = 120∠75°/ 7.5∠30°
Z = 16∠(75°-30)
Z = 16∠45° Ω
Hence the impedance of the linear network is 16∠45° Ω
The answer is 2Hz
Using the formula f= 1/T we can plug in .5 for T and solve for frequency.