The equation v=rω says that the tangential speed v is proportional to the distance r from the center of rotation. ... This makes sense because a point farther out from the center has to cover a longer arc length in the same amount of time as a point closer to the center.
i'm stuck on that question also
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m
Answer:
magnification will be -0.025
Explanation:
We have given the radius of curvature = 12 cm
And object distance = 3 m
So focal length 
Now for mirror we know that
So 

v = 0.750 m
Now magnification of the mirror is 
Answer:
f = 8 %
Explanation:
given,
density of body of fish = 1080 kg/m³
density of air = 1.2 Kg/m³
density of water = 1000 kg/m²
to protect the fish from sinking volume should increased by the factor f
density of fish + density of water x increase factor = volume changes in water
1080 +f x 1.2 =(1 + f ) x 1000
1080 + f x 1.2 = 1000 + 1000 f
998.8 f = 80
f = 0.0800
f = 8 %
the volume increase factor of fish will be equal to f = 8 %