Answer:
0.077M is the concentration of the hydroxyl ion
Explanation:
Dilution factor is the ratio between the aliquot that is taken of a solution and the total volume of the diluted solution.
For the problem, dilution factor is:
7.53cm³ / 147cm³ =<em> 0.05122</em>
To obtain molarity of a diluted solution you must multiply dilution factor and initial molarity of the solution, thus:
1.5 M × 0.05122 = <em>0.077M is the concentration of the hydroxyl ion</em>
Answer: 54 atm
Explanation:
I did 67/82.5 then got 0.8121212121. I them divided 44 by 0.81212121 and got 54.1791044776
Answer : The pressure of the helium gas is, 1269.2 mmHg
Explanation :
To calculate the pressure of the gas we are using ideal gas equation:

where,
P = Pressure of
gas = ?
V = Volume of
gas = 210. mL = 0.210 L (1 L = 1000 mL)
n = number of moles
= 0.0130 mole
R = Gas constant = 
T = Temperature of
gas = 
Putting values in above equation, we get:


Conversion used : (1 atm = 760 mmHg)
Thus, the pressure of the helium gas is, 1269.2 mmHg
Answer:
.
Explanation:
Based on the electron configuration of this ion, count the number of electrons in this ion in total:
.
Each electron has a charge of
.
Atoms are neutral and have
charge. However, when an atom gains one extra electron, it becomes an ion with a charge of
. Likewise, when that ion gains another electron, the charge on this ion would become
.
The ion in this question has a charge of
. In other words, this ion is formed after its corresponding atom gains two extra electrons. This ion has
electrons in total. Therefore, the atom would have initially contained
electrons. The atomic number of this atom would be
.
Refer to a modern copy of the periodic table. The element with an atomic number of
is sulphur with atomic symbol
. To denote the ion, place the charge written backwards ("
" for a charge of
) as the superscript of the atomic symbol:
.
Answer:
It shows that weight is a form of force.
Explanation:
Basically, weight is the force exerted by your mass multiplied by the gravitational acceleration of the place you're standing in.