Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Fine particles, ground level ozone, sulfur dioxide, nitrogen dioxide, lead
Answer:
Explanation:
THE PHOTOCHEMICAL(LIGHT) REACTIONS :This is a phase of photosynthesis where sunlight is used as a source of energy to manufacture two chemical compounds which are "Reduced nicotinamide adenine dinucleotide phosphate"-NADPH and "Adenosine triphosphate"-ATP.This phase of photosynthesis involves 4 steps or reactions which are :
STEP 1 : Activation or Energization of chlorophyll - In this reaction,chlorophyll molecules in green algae or plants absorb sunlight and become activated,that is the electrons of the chlorophyll molecule acquire solar energy and become excited.
STEP 2 : PHOTOLYSIS OF WATER - Here the energy absorbed by the chlorophyll molecules are used to split water molecules into H+ ions and OH-- ions.
STEP 3:Formation of NADPH -The hydrogen ions (H+) produced reacts with an NADP ( an electron carrier in the chlorophyll) to form NADPH.
STEP 4: FORMATION OF ATP - The high energy generated from the electron transfer process or chain is used to add a phosphate group to ADP (Adenosine dphosphate) to form ATP.
DARK PHASE :In this phase of photosynthesis,the NADPH generated in the light phase is used as a reducing equivalent to reduce CO2 to form Glucose (food) using the ATP generated as a source of energy.
C. Summarizing
He read the book, then summarized what he read in his report.