Answer:
True
Explanation:
If a thin, spherical, conducting shell carries a negative charge, We expect the excess electrons to mutually repel one another, and, thereby, become uniformly distributed over the surface of the shell. The electric field-lines produced outside such a charge distribution point towards the surface of the conductor, and end on the excess electrons. Moreover, the field-lines are normal to the surface of the conductor. This must be the case, otherwise the electric field would have a component parallel to the conducting surface. Since the excess electrons are free to move through the conductor, any parallel component of the field would cause a redistribution of the charges on the shell. This process will only cease when the parallel component has been reduced to zero over the whole surface of the shell
According to Gauss law
∅ = EA =-Q/∈₀
Where ∅ is the electric flux through the gaussian surface and E is the electric field strength
If the gaussian surface encloses no charge, since all of the charge lies on the shell, so it follows from Gauss' law, and symmetry, that the electric field inside the shell is zero. In fact, the electric field inside any closed hollow conductor is zero
Answer:
Wrong its B Use a different amount of mass in the cart for five different trials, roll the cart down a ramp with the same slope for each trial, and measure how long it takes the cart to roll one meter each time.
Explanation:
Answer: 161.3
I have a acellus too and got this question correct, so I hope this helps y’all out
Explanation:
(D) i think there you go have a good day
Answer:
X-rays travel through space faster than radio waves.
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:

Electromagnetic waves are classified into 7 different types, according to their wavelength/frequency. From shortest to longest wavelength (and so, from highest to lowest frequency), we have:
Gamma rays
X rays
Ultraviolet
Visible light
Infrared radiation
Microwaves
Radio waves
Now we can analyze the 4 statements:
X-rays and radio waves are both forms of light, or electromagnetic radiation --> TRUE. They are both types of electromagnetic waves.
X-rays have higher frequency than radio waves. --> TRUE, as we can see from the table above.
X-rays have shorter wavelengths than radio waves. --> TRUE, as we can see from the table above.
X-rays travel through space faster than radio waves. --> FALSE: all electromagnetic waves travel in space at the same speed, the speed of light.