Answer:
from a lesser hight
Explanation:
because you need less force
hope its right if it is mark brainlyest ;)
Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Answer:
10.32874 m
Explanation:
= Atmospheric pressure = 101325 Pa
g = Acceleration due to gravity = 9.81 m/s²
h = Height of water
= Density of water = 1000 kg/m³
If the walls of the tube do not collapse that means that maximum pressure inside will be the atmospheric pressure
Atmospheric pressure is given by

The maximum height to which Superman can lift the water is 10.32874 m
On the Moon there is no atmosphere so no atmospheric pressure which means when the straw is placed in water water will not rise in the tube.
The answer to your question would be C
Answer:
A
Explanation:
hydrostatic pressure, P=hρg,
where 'h' is the ht of the liq column and ρ is the density of the liquid and 'g' is the effective acceleration, but as far as hydroSTATICS is concerned, g stands for the acceleration due to gravity