
As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its
can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.
Let the three equations with
given be denoted as (1), (2), (3), and the last equation (4). Let
,
, and
be letters such that
. This relationship shall hold for all chemicals involved.
There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance,
shall resemble the number of
left on the product side when the second equation is directly added to the third. Similarly
Thus
and

Verify this conclusion against a fourth species involved-
for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

energy is required to move from one state or phase of matter to the next. Energy is used to make a liquid into a gas or a solid into a liquid.
There are several information's already given in the question. Based on those information's, the answer can be easily deduced.
Amount of gasoline required by Harry's car to travel 25 miles = 1 gallon
Then
amount of gasoline required
by Harry's car to travel 15000 miles = 15000/25
= 600 gallons
So
Amount of CO2 released by burning 1 gallon of gasoline = 20 pounds
Then
Amount of CO2 released
by burning 600 gallon of gasoline = 600 * 20
= 12000 pounds
From the above deduction, it can be concluded that the amount of CO2 that will be added by Harry's car to the atmosphere is 12000 pounds.
Answer:
valency of an element is a combining power of an element.
for example oxygen has six valance electron but its valency is 2.
hope it helps.
Answer:
The volume of the sample of the gas is found to be 12.90 L.
Explanation:
Given pressure of the gas = P = 1.10 atm
Number of moles of gas = n = 0.6000 mole
Temperature = T = 288.15 K
Assuming the volume of the gas to be V liters
The ideal gas equation is shown below

Volume occupied by gas = 12.90 L