Answer:
pH = 4.543
Explanation:
- CH3CH2COOH + H2O ↔ CH3CH2COO- + H3O+
- pKa = - Log Ka
∴ Ka = [H3O+][CH3CH2COO-]/[CH3CH2COOH]
∴ pKa = 4.87
⇒ Ka = 1.349 E-5 = [H3O+][CH3CH2COO-]/[CH3CH2COOH]
added 300 mL 0f 0.02 M NaOH:
⇒ <em>C</em> CH3CH2COOH = ((0.200 L)(0.15 M)) - ((0.300 L)(0.02 M))/(0.3 + 0.2)
⇒ <em>C</em> CH3CH2COOH = 0.048 M
⇒ <em>C</em> NaOH = (0.300 L)(0.02 M) / (0.3 +0.2) = 0.012 M
mass balance:
⇒ 0.048 + 0.012 = 0.06 M = [CH3CH2COO-] + [CH3CH2COOH].......(1)
charge balance:
⇒ [H3O+] + [Na+] = [CH3CH2COO-]
∴ [Na+] = 0.02 M
⇒ [CH3CH2COO-] = [H3O+] + 0.02 M.............(2)
(2) in (1):
⇒ [CH3CH2COOH] = 0.06 M - 0.02 M - [H3O+] = 0.04 M - [H3O+]
replacing in Ka:
⇒ 1.349 E-5 = [H3O+][([H3O+] + 0.02) / (0.04 - [H3O+])
⇒ (1.349 E-5)(0.04 - [H3O+]) = [H3O+]² + 0.02[H3O+]
⇒ 5.396 E-7 - 1.349 E-5[H3O+] = [H3O+]² + 0.02[H3O+]
⇒ [H3O+]² + 0.02001[H3O+] - 5.396 E-7 = 0
⇒ [H3O+ ] = 2.867 E-5 M
∴ pH = - Log [H3O+]
⇒ pH = 4.543
Explanation:
When a carboxylic acid is treated with an alcohol and an acid catalyst, an ester is formed (along with water). This reaction is called the Fischer esterification.
Active transport is the moving of molecules across the membrane of the cell against the concentration gradient with the use of ATP.
Low to high concentration. Concentration gradient is the diffusion (movement of molecules from regions of low concentration) from high to low with the gradient. Active transport is from low to high, against the gradient.
Answer:
3
Explanation:
If oxygen reacts with iron, then both must be reactants and rust the product of that reaction
All objects DO emit and absorb electromagnetic radiation. therefore, true.