Answer:
The molar mass of lysine using the ideal gas equation for this problem is 146.25 g/mole.
Explanation:
The ideal gas equation PV = nRT, was derived from the ABC laws (Avogadros, Boyles and Charles laws). We need to obtain the value for the number of moles n.
The parameters of this equation are:
P = 1.918 atm
V = 750.0mL = 0.75L
n = ?
R = 0.0821
T = 25 degree celcius = 25 + 273 = 298 degree kelvin.
From this formular, n = (PV)/(RT)
n = (1.918 X 0.75)/(0.0821 X 298 )
n = 0.0588
n, no of mole = mass/molar mass
0.0588 = 8.6/MM
MM = 8.6/0.0588
MM = 146.25g/mole.
Answer:

Explanation:
= Initial volume = 100 mL
= Final volume = 1000 mL
= Initial concentration = 0.5 M
= Final concentration
We have the relation

The new concentration is
.
Answer:
0.45 moles
Explanation:
The computation of the number of moles left in the cylinder is shown below:
As we know that

we can say that

where,
n1 = 1.80 moles of gas
V2 = 12.0 L
And, the V1 = 48.0 L
Now placing these values to the above formula
So, the moles of gas in n2 left is

= 0.45 moles
We simply applied the above formulas so that the n2 moles of gas could arrive
44 g of carbon dioxide (CO2) 16 g of oxygen (O) Oxygen is diatomic but because there is written (O) I will said that 16 g is equal to one mole of oxygen atoms
~Glad to help ^^
Answer:
The substance can be best classified as a molecular substance
Explanation:
The given information are;
The physical state of the substance at 25°C = Solid state
The physical state of the substance at 150°C = Molten
Molecular substances are those with bonds formed by electron sharing among the constituent atoms and they contain a few number of atoms per molecule. Molecular compounds with molecular weight less than 100, usually exist as liquids or gases at room temperature, while those with molecular weights over 100 can be found in a solid state at room temperature.
Generally, molecular compounds are usually volatile and have a melting point less than 300°C
Therefore, the substance can be best classified as a molecular substance.