The purpose of the scapula to move during arm elevation is increase the range of elevation of the arm.
<h3>What is the importance of movement of the scapula during arm elevation?</h3>
The scapula is an important bone which is found in the shoulder and back region of the body.
The scapula enables and increases the range of motion of the arm with its motions.
During arm elevation, the scapula undergoes an upward rotational motion.
Therefore, the  purpose of the scapula to move during arm elevation is increase the range of elevation of the arm.
Learn more about scapula motion at: brainly.com/question/5133017
#SPJ12
 
        
             
        
        
        
Answer:Half-life is the amount of time it takes for the initial mass of the isotope to decompose, by half, into other lighter atoms.
Explanation:Different radioactive isotopes have different half-lives. For example, the element technetium-99m has a half life of 6 hours. This means that is 100 kg of the element is left to decay, in 6 hours, 50kg of the mass will have changed into other elements/atoms. The half-life of uranium-238 is 4.5 billion years while that of polonium-216 is only 0.145 seconds.
 
        
                    
             
        
        
        
Explanation:
uuubbv. very ecrcvtyfyhc g you f gg and you are the one to give me the chance for a little bit of time and effort into this is 6.0 and if 
 
        
             
        
        
        
Answer:
Groceries stay in the bag.
Explanation:
Given:
Maximum force = 250 N
Bag filled with = 20 kg
Lifted acceleration = 
Solution:
We need to calculate the exerted force on the grocery bag by using Newton's second law.

Where:
F = Exerted force on the object.
m = Mass of the object in kg
a = Acceleration of the object in 
Now, we substitute m = 20 kg and a =  in Newton's second law,
 in Newton's second law,


Since, the exerted force on the bag is less than 250 N, the groceries will stay in the bag.
 
        
             
        
        
        
Answer:
40 Hz
Explanation:
f = 1/T = 1 / 0.025 = 40 Hz