Answer:
Yes
Explanation:
By definition, the equilibrium constanct, Kc, for the reaction A ⇒ 2B is
= [A]^1 / [B]^2
Substitute [A] = 4 and [B] = 2 in the equation,
[A]^1 / [B]^2
= 4^1 / 2^2
= 1
= Kc
So yes the reaction is at equilibrium.
The answer choice is going to be B.
Answer: The enthalpy change for formation of butane is -125 kJ/mol
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
Thus enthalpy change for formation of butane is -125 kJ/mol
D = m / V
d = 1300 g / 743 cm³
d = 1.749 g/cm³
The specific heat of the metal is 2.4733 J/g°C.
Given the following data:
- Initial temperature of water = 25.0°C
- Final temperature of water = 29.0°C
- Temperature of metal = 203.0°C
We know that the specific heat capacity of water is 4.184 J/g°C.
To find the specific heat of the metal (J/g°C):
Heat lost by metal = Heat gained by water.

Mathematically, heat capacity or quantity of heat is given by the formula;

<u>Where:</u>
- Q is the heat capacity or quantity of heat.
- m is the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Substituting the values into the formula, we have:

Specific heat capacity of metal, c = 2.4733 J/g°C
Therefore, the specific heat of the metal is 2.4733 J/g°C.
Read more: brainly.com/question/18691577