Answer:
NO2- is the reducing agent.
Cr2O7_2- is the oxidizing agent.
H+ is neither
Explanation:
Reduction is the gain in electron. A chemical specie that undergoes reduction is called the oxidizing agent.
Oxidation is simply the loss in electrons. A chemical specie that undergoes oxidation is called the reducing agent.
Let us look at the species.
The first specie is the NO2-. In this specie, the oxidation number of nitrogen changed from +3 to +5 in NO3-. Thus we can see that there is more loss of electron to have caused an increase in the oxidation number positively. This shows an oxidation. Hence, NO2- is the reducing agent.
Let us look at the chromium. We can see that the oxidation number of chromium changed from +7 to +3.
Now we can see that it is a decrease and hence, it is a gain of electron and thus it is reduction. This means the first chromium specie is the oxidizing agent.
The hydrogen ion is simply placed there to balance the ions and hence it is neither the oxidizing nor the reducing agent.
They don't change what the substance really is unlike chemical change. They chemical formula of the substance stays the same even though the substance can go under shape change.
T<span>he </span>Andes<span> range has many active volcanoes, which are distributed in four volcanic zones separated by areas of inactivity. The </span>Andean<span> volcanism is a result of subduction of the Nazca Plate and Antarctic Plate underneath the South American Plate.</span>
Answer:

Explanation:
Hello,
In this case, for this heat transfer process in which the heat lost by the hot platinum is gained by the cold deuterium oxide based on the equation:

We can represent the heats in terms of mass, heat capacities and temperatures:

Thus, we solve for the mass of platinum:

Next, by using the density of platinum we compute the volume:

Which computed in terms of the edge length is:

Therefore, the edge length turns out:
![a=\sqrt[3]{180cm^3}\\ \\a=5.65cm](https://tex.z-dn.net/?f=a%3D%5Csqrt%5B3%5D%7B180cm%5E3%7D%5C%5C%20%5C%5Ca%3D5.65cm)
Best regards.