Answer:
86.3 g of N₂ are in the room
Explanation:
First of all we need the pressure from the N₂ in order to apply the Ideal Gases Law and determine, the moles of gas that are contained in the room.
We apply the mole fraction:
Mole fraction N₂ = N₂ pressure / Total pressure
0.78 . 1 atm = 0.78 atm → N₂ pressure
Room temperature → 20°C → 20°C + 273 = 293K
Let's replace data: 0.78 atm . 95L = n . 0.082 . 293K
(0.78 atm . 95L) /0.082 . 293K = n
3.08 moles = n
Let's convert the moles to mass → 3.08 mol . 28g /1mol = 86.3 g
The cubes have only the same volume, so the answer is c.
The empirical formula is N₂O₅.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of N:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio¹ </u> <u> ×2² </u> <u>Integers</u>³
N 1.85 1 2 2
O 4.63 2.503 5.005 5
¹To get the molar ratio, you divide each number of moles by the smallest number (1.85).
²Multiply these values by a number (2) that makes the numbers in the ratio close to integers.
³Round off the number in the ratio to integers (2 and 5).
The empirical formula is N₂O₅.
Answer:
- metal sulfate
- metal sulfate
- copper sulfate
- copper nitrate
- copper chloride
- copper phosphate
- hydrochloric acid, water
- Potassium, sulfuric acid, water
(Correct me if I am wrong)
Answer:
0.544 M
Explanation:
First find the moles in the final solution
0.8 mols/L *1.7L
1.36 mols
so there is 1.36 mols in 2.5L
concentration will be 1.36/2.5
0.544 M