Frequency = speed / wavelength
(6 m/s) / (12 m) = 0.5 Hz.
That's not infrared light.
Infrared light waves move about 50 million times faster than that, and they're only about 0.00000007 as long as that.
In the outer layers of earths atmosphere gases are in ionized state primarily on account of cosmic rays . as earth rotates , strong electric current are set up due to movement of ions . these currents form earth magnetic field . and thus two equal and opposite poles of earth formed
Answer:
16.53 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 18.0 m/s.
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
The maximum height reached by the ball can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
0² = 18² – (2 × 9.8 × h)
0 = 324 – 19.6h
Rearrange
19.6h = 324
Divide both side by 19.6
h = 324 / 19.6
h = 16.53 m
Therefore, the maximum height reached by the ball is 16.53 m
Answer:
d = 1.07 mile
Explanation:
The rationale for this method is that the speed of light is much greater than the speed of sound, the definition of speed in uniform motion is
v = d / t
d = v t
the speed of sound is worth
v = 343 m / s
Therefore, the speed of sound must be multiplied by time to do this, all the units must be in the same system, as the distance in miles is requested
v = 343 m/s (1mile/1609 m) (3600s/1 h) = 343 (2.24) = 767.4 mile/h
v = 343 m / s (1 mile / 1609 m) = 0.213, mile/ s
If the measured time is t = 5s we multiply it by the speed
we substitute
d = 0.213 5
d = 1.07 mile
If you want to calculate the speed, this method in general is not widely used, since you must know the distance where the lightning occurred, which is relatively complicated.
3) The answer is (b) -8 m/s (pointing down)
4) The answer is (c) -9.8 m/s^2 (acceleration of a freely falling object is always due to gravity, -9.8 m/s^2, regardless of direction)