Answer:
m 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 mm 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 m
Explanation:
That is a reason
Answer:
Work done, W = 1786.17J
Explanation:
The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "
Mass of a painter, m = 75 kg
He climbs 2.75-m ladder that is leaning against a vertical wall.
The ladder makes an angle of 30 degrees with the wall.
We need to find the work done by the gravity on the painter.
The angle between the weight of the painter and the displacement is :
θ = 180 - 30
= 150°
The work done by the gravity is given by :

Hence, the required work done is 1786.17 J.
Answer:
Please mark as Brainliest!!
Explanation:
He will not succeed as it blows the trumpet harder that only increase the amplitude of the sound wave that means the intensity of the sound will increase but the frequency remains the same.
Answer:
1,373.4 N
Explanation:
The mass of the table acts at the centre in addition to the books since that is the centre of gravity of the table.
Mass of books will be 10kg+20kg+30kg=60 kg
Total mass of table and books will be 500kg+60kg=560 kg
This mass is evenly distributed into the four legs hence 560kg/4 legs=140 kg per leg
Force is product of mass and acceleration due to gravity hence F=gm
Taking g as 9.81 m/s2 then
F=140*9.81=1,373.4 N
Therefore, rhe normal force is equivalent to 1,373.4 N
The position of the first ball is

while the position of the second ball, thrown with initial velocity
, is

The time it takes for the first ball to reach the halfway point satisfies



We want the second ball to reach the same height at the same time, so that



