Although many characteristics are common<span> throughout the </span>group<span>, the heavier metals such as Ca, Sr, Ba, and Ra are almost as reactive as the </span>Group<span> 1 Alkali Metals. All the </span>elements<span> in </span>Group 2 have two<span> electrons in their valence shells, giving them an oxidation state of +</span><span>2.</span>
If time is specified, the distance may be estimated in constant acceleration using the formula: X=(at2)/2 if the beginning velocity is 0. (A automobile begins from a stop...) As a result, X=(6*10*10)/2=600/2 = 300 m.
4. a poor insulator
If rest other things are kept constant or unchanged then a good conductor can be termed as a poor insulator.
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>
you take a length of ordinary wire, make it into a big loop, and lay it between the poles of a powerful, permanent horseshoe magnet. Now if you connect the two ends of the wire to a battery, the wire will jump up briefly.When an electric current starts to creep along a wire, it creates a magnetic field all around it. If you place the wire near a permanent magnet, this temporary magnetic field interacts with the permanent magnet's field.