Answer:
Constant speed: yes
Constant velocity: no
Explanation:
Let's remind the definition of speed and velocity:
- Speed is a scalar quantity, which is equal to the ratio between the distance covered (regardless of the direction) and the time taken:

- Velocity is a vector quantity, so it has both a magnitude and a direction. The magnitude is equal to the rate between the displacement of the object and the time taken, while the direction is the same as the displacement.
In this problem, we notice that:
- The speed of the car remains constant, as it is 90 km/h
- However, its direction of motion changes while the car travels round the corner: this means that the direction of the velocity is also changing, therefore velocity is not constant.
Answer:
Gravity
Explanation:
Due to earths gravity, anything that goes into the air returns back to the surface unless it is given the ability to fly.
Hope this helps!
Answer:
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
Explanation:
This problem is an application of momentum and momentum. When the astronaut pushed balls, he needed more force to move the ball of greater mass (bowling). The expression for soul is
p = m v
Besibol Blade
p1 = m1 v
Bowling ball
p2 = m2 v
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
p2 >> p1
Answer:
the number of photons of yellow light does the lamp generate in 1.0 s is 7 x 
Explanation:
given information:
power, P = 25 W
wavelength. λ - 580 nm = 5.80 x
m
time, t = 1 s
to calculate the number of photon(N), we use the following equation
N = λPt/hc
where
λ = wavelength (m)
P = power (W)
t = time interval (s)
h = Planck's constant (6.23 x
Js)
c = light's velocity (3 x
)
So,
N = λPt/hc
= (5.80 x
)(25)(1)/(6.23 x
)(3 x
)
= 7 x 
A) 750 m
First of all, let's find the wavelength of the microwave. We have
is the frequency
is the speed of light
So the wavelength of the beam is

Now we can use the formula of the single-slit diffraction to find the radius of aperture of the beam:

where
m = 1 since we are interested only in the central fringe
D = 30 km = 30,000 m
a = 2.0 m is the aperture of the antenna (which corresponds to the width of the slit)
Substituting, we find

and so, the diameter is

B) 0.23 W/m^2
First we calculate the area of the surface of the microwave at a distance of 30 km. Since the diameter of the circle is 750 m, the radius is

So the area is

And since the power is

The average intensity is
