Answer:
The question has some details missing. here are the details ; Given the following ;
1. 43.2 g of tablet with 20 cm3 of space
2. 5 cm3 of tablets weighs 10.8 g
3. 5 g of balsa wood with density 0.16 g/cm3
4. 150 g of iron. With density 79g/cm 3
5. 32 cm3 sample of gold with density 19.3 g/cm3
6. 18 ml of cooking oil with density 0.92 g/ml
Explanation:
<u>Appropriate for calculating mass</u>
32 cm3 sample of gold with density 19.3 g/cm3
18 ml of cooking oil with density 0.92 g/ml
<u>Appropriate for calculating volume</u>
5 g of balsa wood with density 0.16 g/cm3
150 g of iron. With density 79g/cm 3
<u>Appropriate for calculating density</u>
43.2 g of tablet with 20 cm3 of space
5 cm3 of tablets weighs 10.8 g
Answer:
the electrolysis reaction is a non- spontaneous reaction
Explanation:
Since electrons flow from it, the anode in an electrolytic cell is positive, while the cathode is negative when electrons flow into it. The device functions like a galvanic cell in that direction. In an electrolytic cell, an external voltage is applied and that is what causes a non spontaneous reaction
The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au
Answer:
The solutions are ordered by this way (from lowest to highest freezing point): K₃PO₄ < CaCl₂ < NaI < glucose
Option d, b, a and c
Explanation:
Colligative property: Freezing point depression
The formula is: ΔT = Kf . m . i
ΔT = Freezing T° of pure solvent - Freezing T° of solution
We need to determine the i, which is the numbers of ions dissolved. It is also called the Van't Hoff factor.
Option d, which is glucose is non electrolyte so the i = 1
a. NaI → Na⁺ + I⁻ i =2
b. CaCl₂ → Ca²⁺ + 2Cl⁻ i =3
c. K₃PO₄ → 3K⁺ + PO₄⁻³ i=4
Potassium phosphate will have the lowest freezing point, then we have the calcium chloride, the sodium iodide and at the end, glucose.