Answer:
The mineral fuels—coal, petroleum, and natural gas—may be described as a special type of economic deposit. Geochemically they represent the concentration of carbon and hydrogen by processes that were initially biological in nature.
Explanation:
thank me later
<u>Answer:</u> The temperature of the solution in Kelvins is 422.356 K
<u>Explanation:</u>
Temperature is defined as the measure of coldness or hotness of a body. It also determines the average kinetic energy of the particles in a body.
This term is expressed in degree Celsius, degree Fahrenheit and Kelvins. All these units are interchangeable.
The S.I unit of temperature is Kelvins.
We are given:
Temperature of a solution = 
Conversion used to convert degree Celsius and Kelvins is:
![T(K)=[273.15+T(^oC)]](https://tex.z-dn.net/?f=T%28K%29%3D%5B273.15%2BT%28%5EoC%29%5D)

Hence, the temperature of the solution in Kelvins is 422.356 K
<em>K</em> = 2.4 × 10^(-72)
<em>Step 1</em>. Determine the <em>value of n
</em>
Zn^(2+) + 2e^(-) → Zn
2Cl^(-) → Cl_2 + 2e^(-)
Zn^(2+) + 2Cl^(-) → Zn + Cl_2
∴ <em>n</em> = 2
<em>Step 2</em>. Calculate <em>K</em>
log<em>K</em> = <em>nE</em>°/0.0592 V = [2 × (-2.12 V)]/0.0592 V = -71.62
<em>K</em> = 10^(-71.62) = 2.4 × 10^(-72)
The term for a push or pull is called Force.
Answer is: the hydronium ion concentratio is 1.71×10⁻⁷ mol/dm³ and pH<6.76.
The Kw (the ionization constant of water) at 40°C is 2.94×10⁻¹⁴ mol²/dm⁶ or 2.94×10⁻¹⁴ M².
Kw = [H₃O⁺] · [OH⁻].
[H₃O⁺] = [OH⁻] = x.
Kw = x².
x = √Kw.
x = √2.94×10⁻¹⁴ M².
x = [H₃O⁺] = 1.71×10⁻⁷ M; concentration of hydronium ion.
pH = -log[H₃O⁺].
pH = -log(1.71×10⁻⁷ M).
pH = 6.76.
pH (potential of hydrogen) is a numeric scale used to specify the acidity or basicity an aqueous solution.