Answer:
Displacement and acceleration
Write each force in component form:
<em>v </em>₁ : 50 N due east → (50 N) <em>i</em>
<em>v</em> ₂ : 80 N at N 45° E → (80 N) (cos(45°) <em>i</em> + sin(45°) <em>j</em> ) ≈ (56.5 N) (<em>i</em> + <em>j</em> )
The resultant force is the sum of these two vectors:
<em>r</em> = <em>v </em>₁ + <em>v</em> ₂ ≈ (106.5 N) <em>i</em> + (56.5 N) <em>j</em>
Its magnitude is
|| <em>r</em> || = √[(106.5 N)² + (56.5 N)²] ≈ 121 N
and has direction <em>θ</em> such that
tan(<em>θ</em>) = (56.5 N) / (106.5 N) → <em>θ</em> ≈ 28.0°
i.e. a direction of about E 28.0° N. (Just to clear up any confusion, I mean 28.0° north of east, or 28.0° relative to the positive <em>x</em>-axis.)
It’s C
Because C is a reflection which reflects something such as mirror
Hope this helps! •~•
Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:



The velocity after the collision is 2.82 m/s
Frequency = (speed) / (wavelength)
Frequency = (331 m/s) / (0.6 m) = 551.7 Hz