Answer:
The energy of these two photons would be the same as long as their frequencies are the same (same color, assuming that the two bulbs emit at only one wavelength.)
Explanation:
The energy
of a photon is proportional to its frequency
. The constant of proportionality is Planck's Constant,
. This proportionality is known as the Planck-Einstein Relation.
.
The color of a beam of visible light depends on the frequency of the light. Assume that the two bulbs in this question each emits light of only one frequency (rather than a mix of light of different frequencies and colors.) Let
and
denote the frequency of the light from each bulb.
If the color of the red light from the two bulbs is the same, those two bulbs must emit light at the same frequency:
.
Thus, by the Planck-Einstein Relation, the energy of a photon from each bulb would also be the same:
.
Note that among these two bulbs, the brighter one appears brighter soley because it emits more photons per unit area in unit time. While the energy of each photon stays the same, the bulb releases more energy by emitting more of these photons.
Its a solar cell. Photo voltaic Cell is also known as a solar cell.
Answer:
<em>Choice: c. 6sec</em>
Explanation:
<u>Horizontal Launch
</u>
When an object is thrown horizontally with a speed (v) from a height (h), it describes a curved path ruled by gravity until it finally hits the ground.
The horizontal component of the velocity is always constant because no acceleration exists in that direction, thus:

The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

Where 
To calculate the time the object takes to hit the ground, we use the same formula as for free-fall, since the time does not depend on the initial speed:

The marble rolls the edge of the table at a height of h=180 m, thus:


t = 6 sec
Choice: c. 6sec
Answer:
3.64×10⁸ m
3.34×10⁻³ m/s²
Explanation:
Let's define some variables:
M₁ = mass of the Earth
r₁ = r = distance from the Earth's center
M₂ = mass of the moon
r₂ = d − r = distance from the moon's center
d = distance between the Earth and the moon
When the gravitational fields become equal:
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
M₁ / r² = M₂ / (d − r)²
M₁ / r² = M₂ / (d² − 2dr + r²)
M₁ (d² − 2dr + r²) = M₂ r²
M₁d² − 2dM₁ r + M₁ r² = M₂ r²
M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0
d² − 2d r + (1 − M₂/M₁) r² = 0
Solving with quadratic formula:
r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)
When we plug in the values, we get:
r = 3.64×10⁸ m
If the moon wasn't there, the acceleration due to Earth's gravity would be:
g = GM / r²
g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²
g = 3.34×10⁻³ m/s²
So first things first its c. because when two plates collide it causes a earthquake so u can rule those out and of course no not volcano so that's it u only have c left as your answer choice.
:/