Answer:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Explanation:
Potassium and chlorine gas combine to form potassium chloride which is an ionic compound. The reaction is a type of combination reaction in which chlorine is being added to the metal, potassium.
Potassium reacts violently with the chlorine which is yellowish green in color to produce white solid of potassium chloride.
The balanced reaction is shown below as:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer: C.)
Explanation:
i got it right on a unit test!
but it might be something else if there arranged different!
sorry!
Answer: As a result, each excited electron in an atom emits a photon of a specific wavelength. To put it another way, each excited noble gas emits a distinct hue of light. This is a reddish-orange neon light.