Bromine vs Chlorine | Br vs Cl
Halogens are group VII elements in the periodic table, and all are electronegative elements and have the capability to produce -1 anions.
Bromine
Bromine is denoted by the symbol Br. This is in the 4th period of the periodic table between chlorine and iodine halogens. Its electronic configuration is [Ar] 4s2 3d10 4p5. The atomic number of bromine is 35. Its atomic mass is 79.904. Bromine staChlorine is an element in the periodic table which is denoted by Cl. It is a halogen (17th group) in the 3rd period of the periodic table. The atomic number of chlorine is 17; thus, it has seventeen protons and seventeen electrons. Its electron configuration is written as 1s2 2s2 2p6 3s2 3p5. Since the p sub level should have 6 electrons to obtain the Argon, noble gas electron configuration, chlorine has the ability to attract an electron. ys as a red-brown color liquid at room temperature.
Pipes are made of the element Lead so the answer should be d) lead pipe
Complete Question
You determine that it takes 26.0 mL of base to neutralize a sample of your unknown acid solution. The pH of the solution was 7.82 when exactly 13 mL of base had been added, you notice that the concentration of the unknown acid was 0.1 M. What is the pKa of your unknown acid?
Answer:
The pK_a value is
Explanation:
From the question we are told
The volume of base is 
The pH of solution is 
The concentration of the acid is 
From the pH we can see that the titration is between a strong base and a weak acid
Let assume that the the volume of acid is 
Generally the concentration of base

Substituting value


When 13mL of the base is added a buffer is formed
The chemical equation of the reaction is

Now before the reaction the number of mole of base is
![No \ of \ moles[N_B] = C_B * V_B](https://tex.z-dn.net/?f=No%20%5C%20of%20%5C%20moles%5BN_B%5D%20%20%3D%20%20C_B%20%2A%20V_B)
Substituting value

Now before the reaction the number of mole of acid is

Substituting value


Now after the reaction the number of moles of base is zero i.e has been used up
this mathematically represented as

The number of moles of acid is


The pH of this reaction can be mathematically represented as
![pH = pK_a + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%20%3D%20pK_a%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
Substituting values

Remember pH=-log(H ions). So it would be pH=-log(10^-7).