For the purpose we will here use t<span>he ideal gas law:
p</span>×V=n×R×<span>T
V= </span><span>5.0 L
T= </span><span>373K
p= </span><span>203kPa
</span><span>
R is </span> universal gas constant, and its value is 8.314 J/mol×<span>K
</span>
Now when we have all necessary date we can calculate the number of moles:
n=p×V/R×T
n= 203 x 5 / 8.314 x 373 = 0.33 mole
It is actually something standardized more so than theoretical, however in terms of atoms in general the electrons are based on the amount of electronic shells that an atom has and the amount of electrons that atom can accommodate. In the case of sodium, it has three shells with 2 electrons on the first shell which is the maximum, 8 on the second shell which is also the max and 1 on their final shell
So simply put an ATOM of Sodium (Na) has 23 electrons because it has 23 protons which is a fact
<span />
M = 22.1 g
V = 52.3 mL
D = ?
D = m/V
= 22.1/52.3
= 22.1*10/52.3*10
= 221/523
= 0.4
There. I’m sorry i forgot what exactly was the S.I. unit of density :(
J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model. In Thomson's model, the atom is composed of electrons (which Thomson still called “corpuscles,” though G. J.