Main Answer:
Given
pH = -log[H+]
= -log[0.00017]
= 3.769
We know that
pW = pH + pOH
and pW =14
pOH = 14-pH
=14-3.769
=10.231
According to the definition
pOH = -log[OH-]
10.231 = log[OH-]-1
[OH-]= 5.87 x 10-11
Explanation:
What is pH?
pH is defined as the concentration of H+ ion in the solution. If the pH value is less than 7, then the solution will be acidic. If the pH value is greater than 7, then the solution will be basic.
To know more about pH, please visit:
brainly.com/question/8758541
#SPJ4
The molar mass of CO2 can be calculated as follows;
CO2 — 12 + (16x2) = 12+ 32 = 44 g
Therefore molar mass of CO2 is 44 g/mol
In 44 g of CO2 there’s 1 mol of CO2
Then 1 g of CO2 there’s 1/44 mol of CO2
Therefore in 78.3 g of CO2 there’s — 1/44 x 78.3 =1.78 mol of CO2
Answer is: a. Rubidium (Rb) is more reactive than strontium (Sr) because strontium atoms must lose more electrons.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (group 1), in this example rubidium, have lowest ionizations energy and easy remove valence electrons (one electron), they are most reactive metals.
Earth alkaline metals (group 2), in this example strontium, have higher ionization energy than alkaline metals, because they have two valence electrons, they are less reactive.
Rubidium electron configuration: ₃₇Rb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s¹; one valence electron is 5s¹ orbital.
Strontium electron configuration: ₃₈Sr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶5s²; two valence electrons is 5s² orbital.
5 electrons
Boron atomic number 5 has five electrons in its ground state.
Commonly Boron will lose 3 electrons leaving 2 electrons in its most common ionic form.
Explanation:
The atomic number gives the number of protons. Protons which have a positive charge are balanced by an equal number of electrons in a neutral atom.
Boron number 5 has five protons and therefore as a neutral atom also has five electrons.
Boron has an electron configuration of
1s22s22p1
The most stable electron configuration for Boron is
1s2
+ 3 charges. By losing three electrons Boron can achieve the stable electron structure of Helium
Brainliest? :D
1 is seconds and meters m/s
2 is seconds and meters m/s^2
3 Newton kg/m
4 Kilograms
Hope this helps!