Answer:
a) load in Newton is 96,138 b) 129.314mm
Explanation:
Stress = force/ area (cross sectional area of the bronze)
Force(load) = 294*10^6*327*10^-6 = 96138N
b) modulus e = stress/ strain
Strain = stress/ e = (294*10^6)/ (121*10^ 9) = 2.34* 10^ -3
Strain = change in length/ original length = DL/ 129
Change in length DL = 129 * 2.34*10^ -3 = 0.31347
Maximum length = change in length + original length = 129.314mm
Answer:
Torque = 35.60 N.m (rounded off to 3 significant figures.
Explanation:
Given details:
The mass of the rock on the left, ms = 2.25 kg
The total mass of the rocks, mp = 10.1 kg
The distance from the fulcrum to the center of the pile of rocks, rp = 0.360 m
(a) The torque produced by the pile of rock, T = F*rp = m*g*rp
Torque = 9.8*0.360*10.1 = 35.6328
Torque = 35.60 N.m (rounded off to 3 significant figures).
Answer:
This is because, the flywheel has a very large moment of Inertia and hence sudden piston torques have negligible effect on the flywheel, but every piston combined has a significant torque. This smoothens out the vibrations.
Explanation:
We will use the formula / equation to determined the time.
Distance = ½ * (vi + vf) * t
48100 = ½ * (26.3 + 41.9) * t
t = 48100 ÷ 34.1 = 1410.557185 seconds
We will use the formula / equation to determined the acceleration.
vf = vi + a * t
41.9 = 26.3 + a * 1410.557185
a = (41.9 – 26.3) ÷ 1410.557185 = 0.011059459 m/s^2
We will use the formula / equation to determined the acceleration.
vf^2 = vi^2 + 2 * a * d
41.9^1 = 26.3^2 + 2 * a * 48100
a = (41.9^2 – 26.3^2) ÷ 96200 = 0. 011059459 m/s^2
Since both answers are the same, I believe the acceleration is correct.
1000 m/s
You have the wavelength and frequency, you just need to solve for velocity. You can do this by multiplying each side of the equation by frequency.