We can store the copper sulphate solution in alumiun container, if cover on alumiun is present.
<h3>Can you store cuso4 in an aluminum container?</h3>
Aluminium is more reactive than copper so the Aluminium will displace copper sulphate from its solution by reacting with it but if there is cover on the aluminium then the alumium can't react with copper.
So we can store the copper sulphate solution in alumiun container.
Learn more about container here: brainly.com/question/11459708
Answer:
No.
Explanation:
No. There is 1 atom of Ca on the left and 2 Ca's on the right and 2 OH's on the left and 4 on the right.
The balanced equation is:
4OH- + 2Ca2+ ----> 2Ca(OH)2.
Answer:
A = 2A + 3B → 5C
Explanation:
The two molecule of A and three molecules of B will react to form the five molecules of C.
2A + 3B → 5C
Other options are incorrect because,
B = A₂ + B₃ → C₅
in this reaction one molecule of A₂ and one molecule of B₃ combine to form one molecule of C₅.
C = 2A + 5B → 3C
in this reaction two molecules of A and five molecules of B combine to form three molecule of C.
D = A₂ + B₃ → C₃
in this reaction one molecule of A₂ and one molecule of B₃ combine to from one molecule of C₃.
First, we have to see how K2O behaves when it is dissolved in water:
K2O + H20 = 2 KOH
According to reaction K2O has base properties, so it forms a hydroxide in water.
For the reaction next relation follows:
c(KOH) : c(K2O) = 1 : 2
So,
c(KOH)= 2 x c(K2O)= 2 x 0.005 = 0.01 M = c(OH⁻)
Now we can calculate pH:
pOH= -log c(OH⁻) = -log 0.01 = 2
pH= 14-2 = 12
Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K