Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
The answer is true the si base unit for mass is the gram
Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg
The formula for mole is
n= Mass/Mol mass
Mol Mass: S=32
O2= 16(2)
—————
64 g/mol
N= 17.50 g
————— (cancel both g)
64 g/mol
= 0.27 mol is the answer
Answer:
The answer to your question is: C. The specific latent heat of fusion
Explanation:
A. The specific latent heat of vaporization Specific latent heat of vaporization indicates the transition from liquid to vapor, but we are not looking for this definition. This answer is wrong.
B. The specific heat
indicates the amount of heat needed to increase the temperature of water 1°C, so this answer is wrong.
C. The specific latent heat of fusion
. This heat indicate the transition from solid ie to liquid, so this is the right answer.
D. The internal energy measures the energy of the molecules of a substance, so this answer is wrong.