I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
Answer:
Re = 1 10⁴
Explanation:
Reynolds number is
Re = ρ v D /μ
The units of each term are
ρ = [kg / m³]
v = [m / s]
D = [m]
μ = [Pa s]
The pressure
Pa = [N / m²] = [Kg m / s²] 1 / [m²] = [kg / m s²]
μ = [Pa s] = [kg / m s²] [s] = [kg / m s]
We substitute the units in the equation
Re = [kg / m³] [m / s] [m] / [kg / m s]
Re = [kg / m s] / [m s / kg]
RE = [ ]
Reynolds number is a scalar
Let's evaluate for the given point
Where the data for methane are:
viscosity μ = 11.2 10⁻⁶ Pa s
the density ρ = 0.656 kg / m³
D = 2 in (2.54 10⁻² m / 1 in) = 5.08 10⁻² m
Re = 0.656 4 2 5.08 10⁻² /11.2 10⁻⁶
Re = 1.19 10⁴
Answer:
cytoplasm and channel gates
Explanation:
The movement originates from the cytoplasm. This is the fluid medium through which ions are shuttle from one place to another. However, though simple as it might appear to be, the movement requires carrier proteins. The are proteins that facilitate in the movement of the ions. These proteins have specially controlled gates called channel proteins. These are regulated proteins that open and close based on hydrogen ion concentration. These proteins are able to facilitate the movement of ATP molecules.
Answer:

Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,

Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 
So,


l = 0.024 m
Then for relativistic length contraction,







Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
Answer: It represents the whole distance traveled. Hope this helps!
Explanation: