1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
6

Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by a hanging 16.2-N weight (bl

ock C). Block A has a mass of 2.20 kg. The mass of block B is only 1.00 kg. The strings remain taut at all times.
Assuming the pulley is massless and frictionless, what are the values of the tensions 1 and 2?
Physics
1 answer:
Artemon [7]3 years ago
7 0

Newton's second law allows us to find the results for the string tensions are:

  • T₁ = 6.7 N
  • T₂ = 16.54 N

Newton's second law gives a relationship between force, mass and acceleration of bodies

            ∑ F = ma

Where the bold letters indicate vectors, F is the force, m the mass and the acceleration.

Free-body diagrams are representations of the forces applied to bodies without the details of them.

The reference system is a coordinate system with respect to which the forces decompose, in this case the x-axis is parallel to the plane and the positive direction in the direction of movement, the y-axis is perpendicular to the plane.

In the attachment we see a free-body diagram of the three-block system.

Let's apply Newton's second law to each body.

Block C

Y-axis

       W_c -T_2 = m_c a

Block A

X axis  

       T_2 - T_1 - W_a_x = m_a a  

Y axis  

       N_a - W_a_y = 0  

Block B

X axis

      T_1 - W_b_x = m_b a  

Y axis

      N_b - W_b_y =0

Let's  use trigonometry to find the components of the weight.

Block A

         cos θ = \frac{W_a_y}{W_a}  

         sin θ = \frac{W_a_x}{W_a}

         W_a_y = W_a cos \theta

         W_a_x= W_a sin \theta

Block B

        cos θ = \frac{W_b_y}{W_b}

        sin θ =  \frac{W_b_x}{W_b}

        W_b_y = W_b cos \theta \\W_b_x = W_b sin \theta

Let's write our system of equations.

     W_c - T_2 = m_c a \\           T_2 - T_1 - W_a_x = m_a a \\T_1 - W_b_x = m_b a

 

Let's find the acceleration of the bodies, adding the equations.

     W_c - W_a_x - W_b_x = ( m_a+m_b+m_c) a\\  

         

The weight is

    W = mg

Let's  substitute

         (m_c - m_a -m_b ) g \ sin \theta = ( m_c+m_a+m_b)  \ a  \\a= \frac{ m_c-m_a-m_b  }{ m_a+m_b+m_c} \ g sin \theta

Indicate ma mass of the block a ma = 1.00 kg, the mass of the block b mb = 2.2 kg and the weight of the block c Wc = 16.2 N, let's find the mass of block c.

          m_c = Wc / g

          m_c = 16.2 / 9.8

          m_c = 1.65 kg

we substitute the values

          a= \frac{1.65 -2.20 -1.00}{1.65+2.20+1.00} \ 9.8 \ sin \theta  \\a= -0.3096 sin \theta

The negative sign indicates that the system is descending, to be able to give a specified value an angle is needed, they assume that the angle of the ramp is 45º

          a = - 0.3196 sin 45

          a = -0.226 m / s

Taking the acceleration we are going to look for the tensions.

From the equation of block C

           W_c - T_2 = m_c a \\T_2 = m_c ( g-a)\\T_2 = 1.65 ( 9.8 + 0.226)

            T₂ = 16.54 N

From the equation of block B

          T_1 - W_b_x = m_b a\\T_1 = m_b (a + g sin \theta)\\T_1 = 1.00 (-0.226 + 9.8 \ sin 45)

           T₁ = 6.7 N

In conclusion using Newton's second law we can find the results for the string tensions are:

  •  T₁ = 6.7 N
  •  T₂ = 16.54 N

Learn more here:  brainly.com/question/20575355

You might be interested in
A circuit element consists of a resistor with value 20Ω and inductor with value 10mH connected in series. A voltage of LaTeX: v(
Flura [38]

Answer:

8.97 Watt

Explanation:

Resistance, R = 20 ohm

Inductance, L = 10 mH

V(t) = 20 Cos (1000 t + 45°)

Compare with the standard equation

V(t) = Vo Cos(ωt + Ф)

Ф = 45°

ω = 1000 rad/s

Vo = 20 V

Inductive reactance, XL = ωL = 1000 x 0.01 = 10 ohm

impedance is Z.

Z = \sqrt{R^{2}+X_{L}^{2}}

Z = \sqrt{20^{2}+10^{2}}

Z = 22.36 ohm

V_{rms}=\frac{V_{0}}{\sqrt{2}}

V_{rms}=\frac{20}{\sqrt{2}} = 14.144 V

I_{rms}=\frac{V_{rms}}{Z}=\frac{14.144}{\sqrt{22.36}}=0.634 A

Apparent power is given by

P = Vrms x Irms

P = 14.144 x 0.634

P = 8.97 Watt

6 0
3 years ago
If a 4.0Ω resistor, a 6.0Ω resistor, and an 8.0Ω resistor are connected in parallel across a 12 volt battery, what is the total
allsm [11]

Answer:

Explanation:

6.7 amps

7 0
3 years ago
A 117 kg horizontal platform is a uniform disk of radius 1.61 m and can rotate about the vertical axis through its center. A 62.
Ivenika [448]

Answer:

I_syst = 278.41477 kg.m²

Explanation:

Mass of platform; m1 = 117 kg

Radius; r = 1.61 m

Moment of inertia here is;

I1 = m1•r²/2

I1 = 117 × 1.61²/2

I1 = 151.63785 kg.m²

Mass of person; m2 = 62.5 kg

Distance of person from centre; r = 1.05 m

Moment of inertia here is;

I2 = m2•r²

I2 = 62.5 × 1.05²

I2 = 68.90625 kg.m²

Mass of dog; m3 = 28.3 kg

Distance of Dog from centre; r = 1.43 m

I3 = 28.3 × 1.43²

I3 = 57.87067 kg.m²

Thus,moment of inertia of the system;

I_syst = I1 + I2 + I3

I_syst = 151.63785 + 68.90625 + 57.87067

I_syst = 278.41477 kg.m²

8 0
3 years ago
A boy throws a ball of mass 0.22 kg straight upward with an initial speed of 29 m/s. When the ball returns to the boy, its speed
maksim [4K]

Answer:

The work is -67.76 J

Explanation:

The law of conservation of energy is considered one of one of the fundamental laws of physics and states that the total energy of an isolated system remains constant. except when it is transformed into other types of energy.

This is summed up in the principle that energy can neither be created nor destroyed in the universe, only transformed into other forms of energy.

In this case you must calculate the loss of kinetic energy. This loss is actually the work done against the resistive force in the air. Friction is the only force other than gravity that acts on the ball.

So, the loss of kinetic energy is \frac{1}{2} *m*(vf^{2} -vi^{2} )

You know:

  • mass=m=0.22 kg
  • Initial velocity of the ball: vi= 29 \frac{m}{s}

Final velocity of the ball: vf= 15 \frac{m}{s}

Replacing:

\frac{1}{2} *0.22 kg*(15^{2} -29^{2} )= -67.76 J

Friction work is always negative because friction is always against displacement.

<u><em>The work is -67.76 J</em></u>

5 0
3 years ago
Nitroglycerin flows through a pipe of diameter 3.0 cm at 2.0 m/s. If the diameter narrows to 0.5 cm, what will the velocity be?
Korolek [52]

Answer:

72 m/s

Explanation:

D1 = 3 cm, v1 = 2 m/s

D2 = 0.5 cm,

Let the velocity at narrow end be v2.

By use of equation of continuity

A1 v1 = A2 v2

3.14 × 3 × 3 × 2 = 3.14 × 0.5 ×0.5 × v2

v2 = 72 m/s

8 0
3 years ago
Other questions:
  • A 4kg mass traveling eastwards at 4m.s per second collides with a 3kg mass traveling westward as 8m.s per second..calculate the
    8·1 answer
  • If a ball goes at 20 miles per hour what's the velocity
    14·1 answer
  • Using the diagram shown, what is the magnitude of the resultant of these three forces?
    10·1 answer
  • A ball whose mass is 0.3 kg hits the floor with a speed of 5 m/s and rebounds upward with a speed of 2 m/s. If the ball was in c
    14·1 answer
  • What happens when the molecules in a steel bar absorb energy, and start moving quickly?
    7·1 answer
  • What is the momentum of a 31.2 kg object traveling at a velocity of 2.1 m/s?
    14·1 answer
  • What's being transferred between a cell phone and a cell phone tower through radio waves?
    12·1 answer
  • The graph of an object's position over time is a horizontal line and y is not equal to 0. What must be true abou
    13·1 answer
  • At what point does the comet experience the strongest force of gravity?
    14·1 answer
  • A plane wave has equation; y= 25sin(120 _4x).find the: (1)wave length (2)wave velocity (3)frequency and period of the wave
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!