Answer:
A protein has four subunits whose molecular masses are 140, 80, and 60 kDa.
A disulfide bond links the two 80 kDa subunits (possibly identical).
Explanation:
Given that:
A protein has four subunits whose molecular masses are 140, 80, and 60 kDa.
A disulfide bond links the two 80 kDa subunits (possibly identical).
As a result of SDS and dithiothreitol analysis treatment, the molecular masses can not be 360 in total. They are 280, which implies that they are in short of 80 kDa. This means that there are possibilities that two groups with a molecular mass of 80 kDa which are joined by a disulfide bond.
The presence of SDS and dithiothreitol acts as a reducing agent, and they can break disulfide bonds whose pH is greater than 7, i.e. those in basic condition.
The word that best fits the underlined in the sentence is "free-to-rotate." The carbon atoms in their carbon bonds are free to rotate since alkanes do not have geometric isomers. They only have single bonds and the most common example of which are trans molecules.
Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals
A) Na2S
b) AlF3
c) O2
d) C6H12O6
<span>a. x and y are atoms of the same element.
If both atoms contain the same amount of protons, they are always the same element.
</span>