The force of earth's gravitational field is always directed downwards (towards the center of the earth. When the ball is thrown up, it is going against the earth's gravitational field and so, the earth's gravitational force pulls it back down, accelerating it downwards.
If the object's kinetic energy is zero, then due to in multiplication factor, it's momentum will also be equal to zero 'cause the velocity of the object must be Nil
In short, Your Answer would be: "Zero"
Hope this helps!
Answer: c. 1.3 m/s^2
Explanation:
When he is at rest, is weight can be calculated as:
W = g*m
where:
m = mass of the man
g = gravitational acceleration = 9.8m/s^2
We know that at rest his weight is W = 824N, then we have:
824N = m*9.8m/s^2
824N/(9.8m/s^2) = m = 84.1 kg
Now, when the elevators moves up with an acceleration a, the acceleration that the man inside fells down is g + a.
Then the new weight is calculated as:
W = m*(g + a)
and we know that in this case:
W = 932N
g = 9.8m/s^2
m = 84.1 kg
Then we can find the value of a if we solve:
932N = 84.1kg*(9.8m/s^2 + a)
932N/84.1kg = 11.1 m/s^2 = 9.8m/s^2 + a
11.1 m/s^2 - 9.8m/s^2 = a = 1.3 m/s^2
The correct option is C