The answer would be balanced
Answer:
7.28 mol Na2SO4
Explanation:
Since it is already in moles, all we have to do is use a molar ratio
A molar ratio is the proportions of reactants and products using the balanced equation. When writing a mole ratio, the given information must cross out with the right thing.
7.28 mol H2SO4 * 1 mol Na2SO4/1 H2SO4 = 7.28 mol Na2SO4
*notice how the H2SO4 crosses out
<span>2.10 grams.
The balanced equation for the reaction is
CO + 2H2 ==> CH3OH
The key thing to take from this equation is that it takes 2 hydrogen molecules per carbon monoxide molecule for this reaction. And since we've been given an equal number of molecules for each reactant, the limiting reactant will be hydrogen.
We can effectively claim that we have 5.86/2 = 2.93 l of hydrogen and an excess of CO to consume all of the hydrogen. So the number of moles of hydrogen gas we have is:
2.93 l / 22.4 l/mol = 0.130803571 mol
And since it takes 2 moles of hydrogen gas to make 1 mole of methanol, divide by 2, getting.
0.130803571 mol / 2 = 0.065401786 mol
Now we just need to multiply the number of moles of methanol by its molar mass. First lookup the atomic weights involved.
Atomic weight carbon = 12.0107 g/mol
Atomic weight hydrogen = 1.00794 g/mol
Atomic weight oxygen = 15.999 g/mol
Molar mass CH3OH = 12.0107 + 4 * 1.00794 + 15.999 = 32.04146 g/mol
So the mass produced is
32.04146 g/mol * 0.065401786 mol = 2.095568701 g
And of course, properly round the answer to 3 significant digits, giving 2.10 grams.</span>
Answer: increase
Explanation: as pressure is increased, equlilibrium shifts towards the side with less moles of gas.
A) iron melting is the only example of physical change, because it's just a change of state (from solid to liquid).
The others, rusting, combustion, and decay are all chemical changes, because it will result in changing the chemical bonds between the atoms.