Answer: By performing the flame test
Explanation:
The flame test can be performed by the teacher to visually identify the substance in the solution. The metals give a characteristic color on burning. The heat of the flame causes the excitation of the electrons present in the metal ions this leads to release of energy along with the emission of visible wavelength of light. This visible light can be observed by human eye. For example, the copper produces the blue color in flame, barium gives green flame, and sodium gives yellow flame.
Mixtures come in many forms and phases. Most of them can be separated, and the kind of separation method depends on the kind of mixture it is. Below are some common separation methods:
First, we have to remember the molarity formula:

Part 1:
In this case, our solute is sodium nitrate (NaNO3), and we have the mass dissolved in water, then we have to convert grams to moles. For that, we need the molecular weight:

Then, we calculate the moles present in the solution:

Now, we have the necessary data to calculate the molarity (with the solution volume of 200 mL):

The molarity of this solution equals 0.2339 M.
Part 2:
In this case, we have the same amount (in moles and mass) of sodium nitrate, but a different volume of solution, then we only have to change it:

So, the molarity of this solution is 0.1701 M.
Maybe this can help.
In mechanics, speed increase is the pace of progress of the speed of an article regarding time (acceleration). Speed increases are vector amounts (in that they have greatness and direction). The direction of an item's speed increase is given by the direction of the net power following up on that article. The size of an item's speed increase, as depicted by Newton's Second Law, is the consolidated impact of two causes:
the net equilibrium of all outer powers acting onto that item — size is straightforwardly relative to this net coming about force;
that article's mass, contingent upon the materials out of which it is made — extent is conversely relative to the item's mass.