Answer: 77.4 mL
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is:
where,
= initial pressure of dry gas = (760 - 17.5) mmHg= 742.5 mm Hg
= final pressure of dry gas at STP = 760 mm Hg
= initial volume of dry gas = 85.0 mL
= final volume of dry gas at STP = ?
= initial temperature of dry gas =
= final temperature of dry gas at STP =
Now put all the given values in the above equation, we get the final volume of wet gas at STP
Volume of dry gas at STP is 77.4 mL.
The substances present before the reaction are the reactants. (As the reaction goes through, the substances that are produced are called the products of the reaction).
Answer:

Explanation:
Hello.
In this case, taking into account that HCl has one molecule of hydrogen per mole of compound which weights 36.45 g/mol, we compute the number of molecules of hydrogen in hydrochloric acid by considering the given mass and the Avogadro's number:

Now, from the 180 g of water, we see two hydrogen molecules per molecule of water, thus, by also using the Avogadro's number we compute the molecules of hydrogen in water:

Thus, the total number of molecules turns out:

Regards.
Given :
Mass of oxygen containing carbon monoxide (CO) is 2.666 gram .
To Find :
How many grams of carbon (C) would be present in carbon monoxide (CO) that contains 2.666 grams of oxygen (O) .
Solution :
By law of constant composition , a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
So , volume of solution does not matter .
Moles of oxygen ,
.
Now , molecule of CO contains 1 mole of C .
So , moles of C is also 0.167 mole .
Mass of carbon ,
.
Therefore , mass of carbon is 2 grams .
Hence , this is the required solution .