1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
2 years ago
13

Kindlieee hellpp!! ^_^​

Physics
1 answer:
Setler79 [48]2 years ago
5 0

I hope it will help you...

You might be interested in
You weigh 716 newtons on Earth. You
Otrada [13]

Answer:

537 N

Explanation:

The force due to gravity of a planet is:

F = GMm / r²

where G is the universal gravitational constant

M is the mass of the planet

m is the mass of the object

and r is the distance between the object and the center of the planet

On Earth, you weigh 716 N, so:

716 N = GMm / r²

On planet X:

F = G (3M) m / (2r)²

F = 3/4 GMm / r²

F = 3/4 (716 N)

F = 537 N

8 0
4 years ago
In an experiment, a variable, position-dependent force F(x)F(x) is exerted on a block of mass 1.0kg1.0kg that is moving on a hor
leonid [27]

Answer:

The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(C) is correct option.

Explanation:

Given that,

Mass of block = 1.0 kg

Dependent force = F(x)

Frictional force = F(f)

Suppose, the following information would students need to test the hypothesis,

(A) The function F(x) for 0 < x < 5 and the value of F(f).

(B) The function a(t) for the time interval of travel and the value of F(f).

(C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(D) The function a(t) for the time interval of travel, the time it takes the block to move 5 m, and the value of F(f).

(E) The block's initial velocity, the time it takes the block to move 5 m, and the value of F(f).

We know that,

The work done by a force is given by,

W=\int_{x_{0}}^{x_{f}}{F(x)\ dx}.....(I)

Where, F(x) = net force

We know, the net force is the sum of forces.

So, \sum{F}=ma

According to question,

We have two forces F(x) and F(f)

So, the sum of these forces are

F(x)+(-F(f))=ma

Here, frictional force is negative because F(f) acts against the F(x)

Now put the value in equation (I)

W=\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}

We need to find the value of \int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}

Using newton's second law

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{x_{0}}^{x_{f}}{ma\ dx}...(II)

We know that,

Acceleration is rate of change of velocity.

a=\dfrac{dv}{dt}

Put the value of a in equation (II)

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{x_{0}}^{x_{f}}{m\dfrac{dv}{dt}dx}

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\int_{v_{0}}^{v_{f}}{mv\ dv}

\int_{x_{0}}^{x_{f}}{(F(x)-F(f))dx}=\dfrac{mv_{f}^2}{2}+\dfrac{mv_{0}^2}{2}

Now, the work done by the net force on the block is,

W=\dfrac{mv_{f}^2}{2}+\dfrac{mv_{0}^2}{2}

The work done by the net force on the block is equal to the change in kinetic energy of the block.

Hence, The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F(f).

(C) is correct option.

7 0
3 years ago
An object to charge 2.00 c is a pretty from a second object with the same charge by a distance of 1.50 m what is the electric fo
Orlov [11]
F = q₁q₂C / r²

F force
q charge
C Coulomb constant
r separation between charges
5 0
3 years ago
A 12.0 cm object is 9.0 cm from a convex mirror that has a focal length of -4.5 cm. What is the distance of the image from the m
Rasek [7]

Answer:

- 3 cm

Explanation:

From the mirror formula;

1/f = 1/v + 1/u ; where f is the focal length, v is the image distance, and u is the object distance.

1/-4.5 = 1/9 + 1/v

1/v = -1/4.5 - 1/9

    = -1/3

Therefore;

v = -3 cm

Hence;

Image distance is - 3cm

5 0
3 years ago
An electron is accelerated by a 3.6 kv potential difference. the charge on an electron is 1.60218 × 10−19 c and its mass is 9.10
katen-ka-za [31]
By definition, the potential energy is:
 U = qV
 Where,
 q: load
 V: voltage.
 Then, the kinetic energy is:
 K = mv ^ 2/2
 Where,
 m: mass
 v: speed.
 As the power energy is converted into kinetic energy, we have then:
 U = K
 Equating equations:
 qV = mv ^ 2/2
 From here, we clear the speed:
 v = root (2qV / m)
 Substituting values we have:
 v = root ((2 * (1.60218 × 10 ^ -19) * 3600) /9.10939×10^-31))
 v = 3.56 × 10 ^ 7 m / s
 Then, the centripetal force is:
 Fc = Fm
 mv ^ 2 / r = qvB
 By clearing the magnetic field we have:
 B = mv / qr
 Substituting values:
 B = (9.10939 × 10 ^ -31) * (3.56 × 10 ^ 7) / (1.60218 × 10 ^ -19) * 0.059
 B = 3.43 × 10 ^ -3 T
 Answer:
 
A magnetic field that must be experienced by the electron is:
 
B = 3.43 × 10 ^ -3 T
6 0
3 years ago
Other questions:
  • A very long train is rolling at 4 m/s along a straight track. An observer is standing on the ground very dangerously close to th
    12·1 answer
  • Which body exerts the force that propels the sprinter, the blocks or the sprinter?
    9·1 answer
  • Hey guys.. what’s 1,893,9379 x 0
    7·1 answer
  • Why doesn't the force of gravity change the speed of a bowling ball as it rolls along a bowling lane?
    9·1 answer
  • If a constant force acts on two objects of different masses which object will accelerate more?
    10·1 answer
  • Nate the Skate was an avid physics student whose main non-physics interest in life was high-speed skateboarding. In particular,
    15·1 answer
  • A 1200-kg SUV is moving alone a straight highway at 12.0 m/s. Another car, with mass 1800 kg and speed 20.0 m/s, has its center
    12·1 answer
  • A uniform brick of length 26 m is placed over the edge of a horizontal surface. (x=26 m)
    12·1 answer
  • You drop a rock from rest out of a window on the top floor of a building, 20.0 m above the ground. When the rock has fallen 5.00
    15·1 answer
  • A rock is thrown horizontally out of a window with a velocity of 20.0 m/s. If the window is 8.50m above the ground, how far
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!