D. There are two phosphate ions in a molecule of magnesium phosphate
1) <span>A solar eclipse that occurs when the new moon is too far from earth to completely cover the sun can be either a partial solar eclipse or an -->
Answer: ANULAR ECLIPSE. Since the moon is too far, it will cover only a part of the sun, and only the external ring of the moon will be visible; this is called anular eclipse.
2) </span><span>anyone looking from the night side of earth can, in principle, see a -->
Answer: LUNAR ECLIPSE. If the moon is the right position, and the Earth's shadow covers partially or totally the moon, then a lunar eclipse occurs.
3) </span><span>during some lunar eclipses, the moon's appearance changes only slightly, because it passes only through the part of earth's shadow called the -->
Answer: PENUMBRA.
4) </span><span>a ... can occur only when the moon is new and has an angular size larger than the sun in the sky -->
Answer: TOTAL SOLAR ECLIPSE. When the moon is new, it means it is between the sun and the Earth, and its dark side faces the Earth. If the moon's angular size is also larger than the sun angular size, than it will completely cover the sun, and a total solar eclipse occurs.
5) </span><span>a partial lunar eclipse begins when the moon first touches earth's -->
Answer: SHADOW. The Earth's shadow will start to cover the moon, and partial lunar eclipse will start.
6) </span><span> a point at which the moon crosses earth's orbital plane is called a(n) -->
Answer: NODE. Eclipses occur only when the Moon is at or close to a node, otherwise sun, earth and moon are not "aligned".</span>
The height of the liquid column is 4.08 metres.
Answer:
B. It is too slow to observe directly
Explanation:
They move too slow to be able to observe how they move.
I hope it helps! Have a great day!
bren~
Answer:
The spring force constant is
.
Explanation:
We are told the mass of the ball is
, the height above the spring where the ball is dropped is
, the length the ball compresses the spring is
and the acceleration of gravity is
.
We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy
is equal to the final mechanical energy
:

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

If we manipulate the equation we have that:



